The water tank shown in Fig. 1, is shaped like a cylinder. The diameter of the tank is 1 meter. At the bottom of the tank there is a circular pointed hole with a diameter of 0.01 meter. The discharge coefficient of the opening is 0.60. If the tank is filled to a depth of 1 meter, as shown in Fig. 1, how long will it take to empty it?
\[P_x(\rho ,g,H,h,B)=B\cdot g\cdot \left ( H\cdot h-\frac{h^{2}}{2} \right )\cdot \rho [N]\]
Center of pressure
\[h_D(H,h)=\frac{2\cdot h^{2}-3\cdot H\cdot h}{3\cdot h-6\cdot H} [m]\]
For a rectangular surface:
\[H=7 m,h=7 m, B=3 m, \rho = 1000 \frac{kg}{m^{3}}, g=9.81 \frac{m}{s^{2}} \]
\[P(\rho ,g,H,h,B)=B\cdot g\cdot \left ( H\cdot h-\frac{h^{2}}{2} \right )\cdot \rho [N]\]
\[P(\rho ,g,H,h,B)=3\cdot 9.81\cdot \left ( 7\cdot 7-\frac{7^{2}}{2} \right )\cdot 1000 = 721035 N \]
\[h_D(H,h)=\frac{2\cdot h^{2}-3\cdot H\cdot h}{3\cdot h-6\cdot H} [m]\]
\[h_D(H,h)=\frac{2\cdot 7^{2}-3\cdot 7\cdot 7}{3\cdot 7-6\cdot 7} = 2.33 m \]