APPENDIXES

Flow Measurement

Variant 1. Standart
Force on rectangular surface

The water tank shown in Fig. 1, is shaped like a cylinder. The diameter of the tank is 1 meter. At the bottom of the tank there is a circular pointed hole with a diameter of 0.01 meter. The discharge coefficient of the opening is 0.60. If the tank is filled to a depth of 1 meter, as shown in Fig. 1, how long will it take to empty it?

\[P_x(\rho ,g,H,h,B)=B\cdot g\cdot \left ( H\cdot h-\frac{h^{2}}{2} \right )\cdot \rho [N]\]

Center of pressure

\[h_D(H,h)=\frac{2\cdot h^{2}-3\cdot H\cdot h}{3\cdot h-6\cdot H} [m]\]

Fig. A-1
Fig.A-1.00 - The force of hydrostatic pressure on a rectangular surface.

Problem A-1.
The force of hydrostatic pressure on a rectangular surface

For a rectangular surface:

\[H=7 m,h=7 m, B=3 m, \rho = 1000 \frac{kg}{m^{3}}, g=9.81 \frac{m}{s^{2}} \]

Fig. A-1.0
Fig.A-1.0 - The force of hydrostatic pressure on a rectangular surface.

Counting

\[P(\rho ,g,H,h,B)=B\cdot g\cdot \left ( H\cdot h-\frac{h^{2}}{2} \right )\cdot \rho [N]\]

\[P(\rho ,g,H,h,B)=3\cdot 9.81\cdot \left ( 7\cdot 7-\frac{7^{2}}{2} \right )\cdot 1000 = 721035 N \]

\[h_D(H,h)=\frac{2\cdot h^{2}-3\cdot H\cdot h}{3\cdot h-6\cdot H} [m]\]

\[h_D(H,h)=\frac{2\cdot 7^{2}-3\cdot 7\cdot 7}{3\cdot 7-6\cdot 7} = 2.33 m \]

Fig. A-1
Fig.A-1.1 - The force of hydrostatic pressure on a rectangular surface.

Variant 1. Standart
Facts:

Back|var.1|var.2|var.3|var.4