\( \DeclareMathOperator{\abs}{abs} \newcommand{\ensuremath}[1]{\mbox{$#1$}} \)
Solution Three-command method K123 (Numerical metod)
Визначити силу гідростатичного тиску на секторний затвор MN .
Радіус R = 1 м, ширина B = 2 м, висота затвора H = R/2 = 0.5 м.

| (%i1) | kill(all); |
\[\]\[\tag{%o0} \ensuremath{\mathrm{done}}\]
| (%i6) | R:1;B:2;ro:1000;g:9.81;H:R/2;S:300; |
\[\]\[\tag{%o1} 1\]
\[\]\[\tag{%o2} 2\]
\[\]\[\tag{%o3} 1000\]
\[\]\[\tag{%o4} 9.81\]
\[\]\[\tag{%o5} \frac{1}{2}\]
\[\]\[\tag{%o6} 300\]
| (%i8) | fB(h,R):=sqrt(R··2−((R−h)··2));fB(0.5,R)−fB(0.49,R); |
\[\]\[\tag{%o7} \mathop{fB}\left( h\mathop{,}R\right) \mathop{:=}\sqrt{{{R}^{2}}\mathop{-}{{\left( R\mathop{-}h\right) }^{2}}}\]
\[\]\[\tag{%o8} 0.005851002863323074\]
P_x
| (%i9) | Pi_x(h):=ro·g·(R−h)·B; |
\[\]\[\tag{%o9} \mathop{Pi\_ x}(h)\mathop{:=}\ensuremath{\mathrm{ro}} g\, \left( R\mathop{-}h\right) B\]

| (%i13) | n:1000;Px:0;dh:H/n;h:0; |
\[\]\[\tag{%o10} 1000\]
\[\]\[\tag{%o11} 0\]
\[\]\[\tag{%o12} \frac{1}{2000}\]
\[\]\[\tag{%o13} 0\]
| (%i14) | for i: 1 while h < H do (Pi:Pi_x(h)·dh,Px:Px+Pi,h:h+dh)$ |
| (%i15) | Px; |
\[\]\[\tag{%o15} 7359.952500000002\]
| (%i16) | Px_test:integrate(Pi_x(hi),hi,0,H); |
\[\]\[\tag{%o16} 7357.5\]
| (%i20) | n:1000;mPx:0;dh:H/n;h:0; |
\[\]\[\tag{%o17} 1000\]
\[\]\[\tag{%o18} 0\]
\[\]\[\tag{%o19} \frac{1}{2000}\]
\[\]\[\tag{%o20} 0\]
| (%i21) | for i: 1 while h < H do (mPi:Pi_x(h)·(R−h)·dh,mPx:mPx+mPi,h:h+dh)$ |
| (%i22) | mPx; |
\[\]\[\tag{%o22} 5726.179158750008\]
| (%i23) | mPx_test:integrate(Pi_x(hi)·(R−hi),hi,0,H); |
\[\]\[\tag{%o23} 5722.5\]
| (%i27) | n:1000;_mPx:0;dh:H/n;h:0; |
\[\]\[\tag{%o24} 1000\]
\[\]\[\tag{%o25} 0\]
\[\]\[\tag{%o26} \frac{1}{2000}\]
\[\]\[\tag{%o27} 0\]
| (%i28) | for i: 1 while h < H do (_mPi:Pi_x(h)·h·dh,_mPx:_mPx+_mPi,h:h+dh)$ |
| (%i29) | _mPx; |
\[\]\[\tag{%o29} 1633.773341249999\]
| (%i30) | mPx_test:integrate(Pi_x(hi)·hi,hi,0,H); |
\[\]\[\tag{%o30} 1635.0\]
| (%i32) | h_D:mPx/Px;mPx_test/Px_test; |
\[\]\[\tag{%o31} 0.7780184938353891\]
\[\]\[\tag{%o32} 0.2222222222222222\]
| (%i34) | h_D_:_mPx/Px;mPx_test/Px_test; |
\[\]\[\tag{%o33} 0.2219815061646116\]
\[\]\[\tag{%o34} 0.2222222222222222\]
P_z

| (%i39) | R:1;B:2;ro:1000;g:9.81;H:R/2; |
\[\]\[\tag{%o35} 1\]
\[\]\[\tag{%o36} 2\]
\[\]\[\tag{%o37} 1000\]
\[\]\[\tag{%o38} 9.81\]
\[\]\[\tag{%o39} \frac{1}{2}\]
| (%i40) | fB(i,dh,R):=sqrt(R··2−((R−i·dh)··2)); |
\[\]\[\tag{%o40} \mathop{fB}\left( i\mathop{,}\ensuremath{\mathrm{dh}}\mathop{,}R\right) \mathop{:=}\sqrt{{{R}^{2}}\mathop{-}{{\left( R\mathop{-}i\, \ensuremath{\mathrm{dh}}\right) }^{2}}}\]
| (%i45) | n:1000;h:0;Pz:0;dh:H/n;R; |
\[\]\[\tag{%o41} 1000\]
\[\]\[\tag{%o42} 0\]
\[\]\[\tag{%o43} 0\]
\[\]\[\tag{%o44} \frac{1}{2000}\]
\[\]\[\tag{%o45} 1\]
| (%i46) | pi_x(h):=ro·g·(R−h); |
\[\]\[\tag{%o46} \mathop{pi\_ x}(h)\mathop{:=}\ensuremath{\mathrm{ro}} g\, \left( R\mathop{-}h\right) \]
| (%i49) | dh;fdb(i,dh,R):=(fB((i+1),dh,R)−fB((i),dh,R))/dh;fdb(1,dh,1),numer; |
\[\]\[\tag{%o47} \frac{1}{2000}\]
\[\]\[\tag{%o48} \mathop{fdb}\left( i\mathop{,}\ensuremath{\mathrm{dh}}\mathop{,}R\right) \mathop{:=}\frac{\mathop{fB}\left( i\mathop{+}1\mathop{,}\ensuremath{\mathrm{dh}}\mathop{,}R\right) \mathop{-}\mathop{fB}\left( i\mathop{,}\ensuremath{\mathrm{dh}}\mathop{,}R\right) }{\ensuremath{\mathrm{dh}}}\]
\[\]\[\tag{%o49} 26.18270860938711\]
| (%i50) | for i: 0 while h < H do (db:fdb(i,dh,R),Pi:pi_x(h)·db·dh·B,Pz:Pz+Pi,h:h+dh)$ |
| (%i53) | Pz,numer;Pz_test:14520.86;Rel_ERROR:(100/Pz_test)·(Pz_test−Pz,numer); |
\[\]\[\tag{%o51} 14525.046184039022\]
\[\]\[\tag{%o52} 14520.86\]
\[\]\[\tag{%o53} 0.006886644454942751 false\]
| (%i57) | n:1000;h:0;mPz:0;dh:H/n; |
\[\]\[\tag{%o54} 1000\]
\[\]\[\tag{%o55} 0\]
\[\]\[\tag{%o56} 0\]
\[\]\[\tag{%o57} \frac{1}{2000}\]
| (%i58) | for i: 0 while h <= H do(db:fdb(i,dh,R),mPi:pi_x(h)·db·dh·B·fB(i,dh,R),mPz:mPz+mPi,h:h+dh); |
\[\]\[\tag{%o58} \ensuremath{\mathrm{done}}\]
| (%i60) | mPz,numer;mPz_test:5722.5; |
\[\]\[\tag{%o59} 5702.602389493752\]
\[\]\[\tag{%o60} 5722.5\]
| (%i61) | Rel_ERROR:(100/mPz_test)·(mPz_test−mPz,numer); |
\[\]\[\tag{%o61} 0.01747487986020096 false\]
| (%i62) | x_C:mPz/Pz,numer; |
\[\]\[\tag{%o62} 0.39260476815282747\]
| (%i64) | phi_rad:atan(Pz/Px),numer;phi_gr:phi_rad·(180/%pi),numer; |
\[\]\[\tag{%o63} 1.1017969815811555\]
\[\]\[\tag{%o64} 63.12831692485351\]
Answer

| (%i69) | Px,numer;Pz,numer;phi_gr;h_D;x_C; |
\[\]\[\tag{%o65} 7359.952500000002\]
\[\]\[\tag{%o66} 14525.046184039022\]
\[\]\[\tag{%o67} 63.12831692485351\]
\[\]\[\tag{%o68} 0.7780184938353891\]
\[\]\[\tag{%o69} 0.39260476815282747\]
| (%i73) | Px/100,numer;Pz/100,numer;h_D·S,numer;x_C·S,numer; |
\[\]\[\tag{%o70} 73.59952500000003\]
\[\]\[\tag{%o71} 145.25046184039022\]
\[\]\[\tag{%o72} 233.40554815061674\]
\[\]\[\tag{%o73} 117.78143044584824\]
Created with wxMaxima.
The source of this Maxima session can be downloaded here.