D:\j_Iam_TEMP\_jh\_jh_ex2b_3a_v6.wxmx

Умова

Визначити силу гідростатичного тиску на бокову грань "MN" параболоїдального каналу висотою Hmn = 1 метр та шириною B = 3 метри. Рівень води у каналі H = 2 метри.
Аналітичні та чисельні розрахунки методом K123.
Figure 1:
Diagram
Figure 2:D:\j_Iam_TEMP\_jh\_jh_ex2b_3a_v1_F1.svg
Diagram
(%i88) kill(all);

\[\]\[\tag{%o0} \ensuremath{\mathrm{done}}\]

(%i1) load(draw)$
(%i7) ro:1000;g:9.81;H:2;B:3;Hmn:1;n:1000;

\[\]\[\tag{%o2} 1000\]

\[\]\[\tag{%o3} 9.81\]

\[\]\[\tag{%o4} 2\]

\[\]\[\tag{%o5} 3\]

\[\]\[\tag{%o6} 1\]

\[\]\[\tag{%o7} 1000\]

(%i12) fh(x):=x··2;fHab(x):=Hmn;fH(x):=H;Fx(h):=sqrt(h);diff(Fx(h),h);

\[\]\[\tag{%o8} \mathop{fh}(x)\mathop{:=}{{x}^{2}}\]

\[\]\[\tag{%o9} \mathop{fHab}(x)\mathop{:=}\ensuremath{\mathrm{Hmn}}\]

\[\]\[\tag{%o10} \mathop{fH}(x)\mathop{:=}H\]

\[\]\[\tag{%o11} \mathop{Fx}(h)\mathop{:=}\sqrt{h}\]

\[\]\[\tag{%o12} \frac{1}{2 \sqrt{h}}\]

(%i13) dh(h):=1/(2·sqrt(h));

\[\]\[\tag{%o13} \mathop{dh}(h)\mathop{:=}\frac{1}{2 \sqrt{h}}\]

(%i14) Fx(1);

\[\]\[\tag{%o14} 1\]

(%i17) del1:Hmn/10,numer;del2:Hmn/5,numer;del3:Hmn/3,numer;

\[\]\[\tag{%o15} 0.1\]

\[\]\[\tag{%o16} 0.2\]

\[\]\[\tag{%o17} 0.3333333333333333\]

(%i19) del4:Hmn/2.5,numer;del5:Hmn/2,numer;

\[\]\[\tag{%o18} 0.4\]

\[\]\[\tag{%o19} 0.5\]

(%i20) line_w:1;

\[\]\[\tag{%o20} 1\]

(%i21) draw2d(xrange = [1.1,4.5],
yrange = [0,2.5],
   font      = "Arial",
            font_size = 16,
title="Parabola",
   grid = true,
   proportional_axes=xy,
line_width=4,color=black,
explicit(fh(x),x,0,Fx(H)+del1),
   line_width=4,color=grey,
explicit(fh(x),x,Hmn,Fx(H)),
   line_type = solid,
    line_width=3,color=blue,
water:polygon([[0,H],[Fx(H),H]]),
   line_width=3,color=blue,line_type = dots,
water_hm:polygon([[0,Hmn],[Fx(Hmn),Hmn]]),
   line_type = solid,
   color=black,line_width=1,
   head_both = true,
   head_length = 0.2,
   head_angle = 10,
vector([H,H+del2],[1,0]),
   label(["B",2.5,H+del3]),
   points_joined = true,
   points([[2,2],[2,2.3]]),
   points([[3,2],[3,2.3]]),
   points([[3,2],[3.3,2]]),
   points([[3,0],[3,0.3]]),
   vector([3.3,0],[0,2]),
   points_joined = false,
   label_orientation = 'vertical,
label(["H",3.2,Hmn]),
   points_joined = true,
  points([[Fx(Hmn),Hmn],[Fx(Hmn)+1,Hmn]]),
    points([[Fx(Hmn),0],[Fx(Hmn)+1,0]]),
   vector([Fx(Hmn)+0.7,0],[0,Hmn]),
      points_joined = false,
label(["Hmn",1+0.5,Hmn/2]),
   color = black,
   label_orientation = 'horizontal,
   head_both = false,
   line_type = solid,
   head_length = 0.2,
head_angle = 5,
   color = black,
vector([0.5,(H+del3)],[0,0.3]),
   label(["p_a",0.5+0.3,2+0.2]),
      color = black, fill_color = "#eeeeee",
rectangle([2,0],[3,2]),
  color = black,
   fill_color = "#cccccc",
  line_width=4,
rectangle([2,0],[3,1]),
            /*  GPL */
font      = "Arial",
            font_size = 16,
   color = "#0e406e",
label_orientation = 'vertical,
label(["www.k123.org.ua ",4,1.3]),
   label(["Kopanytsia Y (c)  2025",4.3,1.3]),
   color=black,point_type = filled_circle,
   point_size = 2,
   points_joined = false,
points([[0,0]]),
   label_orientation = 'horizontal,
   label(["M",0del2,0+del1]),
   points([[Hmn,Fx(Hmn)]]),
   label(["N",Hmn+del2,Fx(Hmn)])
)$
Figure 3:
Diagram
Figure 4:D:\j_Iam_TEMP\_jh\_jh_ex2b_3a_v2_F1.svg
Diagram
(%i22) plot2d([fh(x),fHab(x),fH(x)],[x,0,H]);

\[\]\[\tag{%o22} false\]

Figure 5:
Diagram
Figure 6:D:\j_Iam_TEMP\_jh\_jh_ex2b_3a_v2_F2.svg
Diagram
(%i23) plot2d(Fx(h),[h,0,H], [color,black],[style, [lines, 5,5]]);

\[\]\[\tag{%o23} false\]

Figure 7:
Diagram
Figure 8:D:\j_Iam_TEMP\_jh\_jh_ex2b_3a_v2_F3.svg
Diagram
(%i24) fp(h):=ro·g·(Hh);

\[\]\[\tag{%o24} \mathop{fp}(h)\mathop{:=}\ensuremath{\mathrm{ro}} g\, \left( H\mathop{-}h\right) \]

Standart
(%i25) h_C_st:HHmn/2,numer;

\[\]\[\tag{%o25} 1.5\]

(%i26) p_c_st:ro·g·h_C_st;

\[\]\[\tag{%o26} 14715.0\]

(%i27) w_st:B·Hmn;

\[\]\[\tag{%o27} 3\]

(%i28) P_x_st:p_c_st·w_st;

\[\]\[\tag{%o28} 44145.0\]

(%i29) I:(B·Hmn··3)/12,numer;

\[\]\[\tag{%o29} 0.25\]

(%i30) h_D_st:h_C_st+(I)/(h_C_st·w_st);

\[\]\[\tag{%o30} 1.5555555555555556\]

(%i31) h_D_down_st:Hh_D_st;

\[\]\[\tag{%o31} 0.4444444444444444\]

P_x - горизонтальна проекція сили тиску

(%i32) scale:100000;

\[\]\[\tag{%o32} 100000\]

(%i33) P_x:integrate(fp(h)·B,h,0,Hmn);

\[\]\[\tag{%o33} 44145.0\]

(%i34) mP_x:integrate(fp(h)·B·(Hh),h,0,Hmn);

\[\]\[\tag{%o34} 68670.0\]

(%i35) mP_x_down:integrate(fp(h)·B·h,h,0,Hmn);

\[\]\[\tag{%o35} 19620.0\]

(%i36) h_D:mP_x/P_x;

\[\]\[\tag{%o36} 1.5555555555555556\]

(%i37) h_D_:mP_x_down/P_x;

\[\]\[\tag{%o37} 0.4444444444444444\]

(%i38) h_D+h_D_;

\[\]\[\tag{%o38} 2.0\]

(%i39) fv(y):=(20.25·y)/2;

\[\]\[\tag{%o39} \mathop{fv}(y)\mathop{:=}\frac{2\mathop{-}0.25 y}{2}\]

(%i42) fv(0);fv(1);fv(2);

\[\]\[\tag{%o40} 1\]

\[\]\[\tag{%o41} 0.875\]

\[\]\[\tag{%o42} 0.75\]

equestion
(%i43) integrate(ro_·g_·(H_h)·B_,h,0,Hmn_);

\[\]\[\tag{%o43} \mathop{-}\left( \frac{\ensuremath{\mathrm{B\_ }} \left( {{\ensuremath{\mathrm{Hmn\_ }}}^{2}}\mathop{-}2 \ensuremath{\mathrm{H\_ }} \ensuremath{\mathrm{Hmn\_ }}\right) \ensuremath{\mathrm{g\_ }} \ensuremath{\mathrm{ro\_ }}}{2}\right) \]

(%i44) P_plot(B_,x,H_):=(4905.0·B_·(Hmn_^22·H_·Hmn_));

\[\]\[\tag{%o44} \mathop{P\_ plot}\left( \ensuremath{\mathrm{B\_ }}\mathop{,}x\mathop{,}\ensuremath{\mathrm{H\_ }}\right) \mathop{:=}\mathop{-}\left( 4905.0 \ensuremath{\mathrm{B\_ }} \left( {{\ensuremath{\mathrm{Hmn\_ }}}^{2}}\mathop{-}2 \ensuremath{\mathrm{H\_ }} \ensuremath{\mathrm{Hmn\_ }}\right) \right) \]

(%i45) P_plot(3,3,4);

\[\]\[\tag{%o45} \mathop{-}\left( 14715.0 \left( {{\ensuremath{\mathrm{Hmn\_ }}}^{2}}\mathop{-}8 \ensuremath{\mathrm{Hmn\_ }}\right) \right) \]

(%i46) P_plot_(ro_,g_,B_,Hmn_,H_):=(((B_·(Hmn_^22·H_·Hmn_)·g_·ro_)/2));

\[\]\[\tag{%o46} \mathop{P\_ plot\_ }\left( \ensuremath{\mathrm{ro\_ }}\mathop{,}\ensuremath{\mathrm{g\_ }}\mathop{,}\ensuremath{\mathrm{B\_ }}\mathop{,}\ensuremath{\mathrm{Hmn\_ }}\mathop{,}\ensuremath{\mathrm{H\_ }}\right) \mathop{:=}\mathop{-}\left( \frac{\ensuremath{\mathrm{B\_ }} \left( {{\ensuremath{\mathrm{Hmn\_ }}}^{2}}\mathop{-}2 \ensuremath{\mathrm{H\_ }} \ensuremath{\mathrm{Hmn\_ }}\right) \ensuremath{\mathrm{g\_ }} \ensuremath{\mathrm{ro\_ }}}{2}\right) \]

(%i47) P_plot_(1000,9.81,3,1,2);

\[\]\[\tag{%o47} 44145.0\]

(%i48) integrate(ro·g·(H_h)·B·h,h,0,Hmn_);

\[\]\[\tag{%o48} \mathop{-}\left( 4905.0 \left( 2 {{\ensuremath{\mathrm{Hmn\_ }}}^{3}}\mathop{-}3 \ensuremath{\mathrm{H\_ }} {{\ensuremath{\mathrm{Hmn\_ }}}^{2}}\right) \right) \]

(%i49) mP_plot(x,H_):=(4905.0·(2·x^33·H_·x^2));

\[\]\[\tag{%o49} \mathop{mP\_ plot}\left( x\mathop{,}\ensuremath{\mathrm{H\_ }}\right) \mathop{:=}\mathop{-}\left( 4905.0 \left( 2 {{x}^{3}}\mathop{-}3 \ensuremath{\mathrm{H\_ }} {{x}^{2}}\right) \right) \]

(%i50) integrate(ro_·g_·(H_h_)·B_·h_,h_,0,Hmn_);

\[\]\[\tag{%o50} \mathop{-}\left( \frac{\ensuremath{\mathrm{B\_ }} \left( 2 {{\ensuremath{\mathrm{Hmn\_ }}}^{3}}\mathop{-}3 \ensuremath{\mathrm{H\_ }} {{\ensuremath{\mathrm{Hmn\_ }}}^{2}}\right) \ensuremath{\mathrm{g\_ }} \ensuremath{\mathrm{ro\_ }}}{6}\right) \]

(%i51) tex(((B_·(2·Hmn_^33·H_·Hmn_^2)·g_·ro_)/6),false);

\[\]\[\tag{%o51} "\$ \$ -\backslash left(\{\{\{\backslash it B\backslash \_ \}\backslash ,\backslash left(2\backslash ,\{\backslash it Hmn\backslash \_ \}\textasciicircum3-3\backslash ,\{\backslash it H\backslash \_ \}\backslash , \{\backslash it Hmn\backslash \_ \}\textasciicircum2\backslash right)\backslash ,\{\backslash it g\backslash \_ \}\backslash ,\{\backslash it ro\backslash \_ \}\}\backslash over\{6\}\}\backslash right)\$ \$ "\]

(%i52) mP_plot_(ro_,g_,B_,Hmn_,H_):=((((2·Hmn_^33·H_·Hmn_^2)·g_·ro_)/2));

\[\]\[\tag{%o52} \mathop{mP\_ plot\_ }\left( \ensuremath{\mathrm{ro\_ }}\mathop{,}\ensuremath{\mathrm{g\_ }}\mathop{,}\ensuremath{\mathrm{B\_ }}\mathop{,}\ensuremath{\mathrm{Hmn\_ }}\mathop{,}\ensuremath{\mathrm{H\_ }}\right) \mathop{:=}\mathop{-}\left( \frac{\left( 2 {{\ensuremath{\mathrm{Hmn\_ }}}^{3}}\mathop{-}3 \ensuremath{\mathrm{H\_ }} {{\ensuremath{\mathrm{Hmn\_ }}}^{2}}\right) \ensuremath{\mathrm{g\_ }} \ensuremath{\mathrm{ro\_ }}}{2}\right) \]

(%i53) h_plot_D_(x,H_):=((4905.0·(2·x^33·H_·x^2)))/((14715.0·(x^22·H_·x)));

\[\]\[\tag{%o53} \mathop{h\_ plot\_ D\_ }\left( x\mathop{,}\ensuremath{\mathrm{H\_ }}\right) \mathop{:=}\frac{\mathop{-}\left( 4905.0 \left( 2 {{x}^{3}}\mathop{-}3 \ensuremath{\mathrm{H\_ }} {{x}^{2}}\right) \right) }{\mathop{-}\left( 14715.0 \left( {{x}^{2}}\mathop{-}2 \ensuremath{\mathrm{H\_ }} x\right) \right) }\]

(%i54) rat(((4905.0·(2·x^33·H_·x^2)))/((14715.0·(x^22·H_·x))));

\[\]\[rat: replaced 0.3333333333333333 by 1/3 = 0.3333333333333333\]

\[\]\[\tag{%o54)/R} \frac{2 {{x}^{2}}\mathop{-}3 \ensuremath{\mathrm{H\_ }} x}{3 x\mathop{-}6 \ensuremath{\mathrm{H\_ }}}\]

(%i55) h_plot_D(x,H_):=(2·x^23·H_·x)/(3·x6·H_);

\[\]\[\tag{%o55} \mathop{h\_ plot\_ D}\left( x\mathop{,}\ensuremath{\mathrm{H\_ }}\right) \mathop{:=}\frac{2 {{x}^{2}}\mathop{-}3 \ensuremath{\mathrm{H\_ }} x}{3 x\mathop{-}6 \ensuremath{\mathrm{H\_ }}}\]

(%i56) h_plot_D(3,4),numer;

\[\]\[\tag{%o56} 1.2\]

(%i57) h_D_plot_(ro_,g_,B_,Hmn_,H_):=((((2·Hmn_^33·H_·Hmn_^2)·g_·ro_)/2))/((((B_·(Hmn_^22·H_·Hmn_)·g_·ro_)/2)));

\[\]\[\tag{%o57} \mathop{h\_ D\_ plot\_ }\left( \ensuremath{\mathrm{ro\_ }}\mathop{,}\ensuremath{\mathrm{g\_ }}\mathop{,}\ensuremath{\mathrm{B\_ }}\mathop{,}\ensuremath{\mathrm{Hmn\_ }}\mathop{,}\ensuremath{\mathrm{H\_ }}\right) \mathop{:=}\frac{\mathop{-}\left( \frac{\left( 2 {{\ensuremath{\mathrm{Hmn\_ }}}^{3}}\mathop{-}3 \ensuremath{\mathrm{H\_ }} {{\ensuremath{\mathrm{Hmn\_ }}}^{2}}\right) \ensuremath{\mathrm{g\_ }} \ensuremath{\mathrm{ro\_ }}}{2}\right) }{\mathop{-}\left( \frac{\ensuremath{\mathrm{B\_ }} \left( {{\ensuremath{\mathrm{Hmn\_ }}}^{2}}\mathop{-}2 \ensuremath{\mathrm{H\_ }} \ensuremath{\mathrm{Hmn\_ }}\right) \ensuremath{\mathrm{g\_ }} \ensuremath{\mathrm{ro\_ }}}{2}\right) }\]

(%i58) rat(((((2·Hmn_^33·H_·Hmn_^2)·g_·ro_)/2))/(((B_·(Hmn_^22·H_·Hmn_)·g_·ro_)/2)));

\[\]\[\tag{%o58)/R} \frac{2 {{\ensuremath{\mathrm{Hmn\_ }}}^{2}}\mathop{-}3 \ensuremath{\mathrm{H\_ }} \ensuremath{\mathrm{Hmn\_ }}}{\ensuremath{\mathrm{B\_ }} \ensuremath{\mathrm{Hmn\_ }}\mathop{-}2 \ensuremath{\mathrm{B\_ }} \ensuremath{\mathrm{H\_ }}}\]

(%i59) _h_D_plot_(ro_,g_,B_,Hmn_,H_):=((2·Hmn_^23·H_·Hmn_)/(B_·Hmn_2·B_·H_));

\[\]\[\tag{%o59} \mathop{\_ h\_ D\_ plot\_ }\left( \ensuremath{\mathrm{ro\_ }}\mathop{,}\ensuremath{\mathrm{g\_ }}\mathop{,}\ensuremath{\mathrm{B\_ }}\mathop{,}\ensuremath{\mathrm{Hmn\_ }}\mathop{,}\ensuremath{\mathrm{H\_ }}\right) \mathop{:=}\frac{2 {{\ensuremath{\mathrm{Hmn\_ }}}^{2}}\mathop{-}3 \ensuremath{\mathrm{H\_ }} \ensuremath{\mathrm{Hmn\_ }}}{\ensuremath{\mathrm{B\_ }} \ensuremath{\mathrm{Hmn\_ }}\mathop{-}2 \ensuremath{\mathrm{B\_ }} \ensuremath{\mathrm{H\_ }}}\]

(%i60) _h_D_plot_(1000,9.81,3,1,2),numer;

\[\]\[\tag{%o60} 0.4444444444444444\]

(%i61) tex((2·Hmn_^23·H_·Hmn_)/(B_·Hmn_2·B_·H_), false);

\[\]\[\tag{%o61} "\$ \$ \{\{2\backslash ,\{\backslash it Hmn\backslash \_ \}\textasciicircum2-3\backslash ,\{\backslash it H\backslash \_ \}\backslash ,\{\backslash it Hmn\backslash \_ \}\}\backslash over\{\{\backslash it B\backslash \_ \}\backslash , \{\backslash it Hmn\backslash \_ \}-2\backslash ,\{\backslash it B\backslash \_ \}\backslash ,\{\backslash it H\backslash \_ \}\}\}\$ \$ "\]

Numer method
(%i65) Ps:0;mPs:0;ni:10000;dhi:Hmn/ni;

\[\]\[\tag{%o62} 0\]

\[\]\[\tag{%o63} 0\]

\[\]\[\tag{%o64} 10000\]

\[\]\[\tag{%o65} \frac{1}{10000}\]

(%i66) for i:1 thru ni step 1 do (Psi:ro·g·(Hdhi·i)·B·dhi,Ps:Ps+Psi)$
(%i67) for i:1 thru ni step 1 do (mPsi:ro·g·(Hdhi·i)·(dhi·i)·B·dhi,mPs:mPs+mPsi)$
(%i70) Ps;mPs;h_D_downi:mPs/Ps;

\[\]\[\tag{%o68} 44143.528499999935\]

\[\]\[\tag{%o69} 19621.471450949975\]

\[\]\[\tag{%o70} 0.4444925930864363\]

---- The end NM
(%i71) P_xv:P_x/scale;

\[\]\[\tag{%o71} 0.44145\]

(%i72) draw2d(xrange = [1.1,4.5],
yrange = [0,3],
   font      = "Arial",
            font_size = 16,
title="Parabola",
   grid = true,
   proportional_axes=xy,
line_width=4,color=black,
explicit(fh(x),x,0,Fx(H)+del1),
   line_width=4,color=grey,
explicit(fh(x),x,Hmn,Fx(H)),
   line_type = solid,
    line_width=3,color=blue,
water:polygon([[0,H],[Fx(H),H]]),
   line_width=3,color=blue,line_type = dots,
water_hm:polygon([[0,Hmn],[Fx(Hmn),Hmn]]),
   line_type = solid,
   color=black,line_width=1,
   head_both = true,
   head_length = 0.2,
   head_angle = 10,
vector([H,H+del2],[1,0]),
   label(["B",2.5,H+del3]),
   points_joined = true,
   points([[2,2],[2,2.3]]),
   points([[3,2],[3,2.3]]),
   points([[3,2],[3.3,2]]),
   points([[3,0],[3,0.3]]),
   vector([3.3,0],[0,2]),
   points_joined = false,
   label_orientation = 'vertical,
label(["H",3.2,Hmn]),
   points_joined = true,
  points([[Fx(Hmn),Hmn],[Fx(Hmn)+1,Hmn]]),
    points([[Fx(Hmn),0],[Fx(Hmn)+1,0]]),
   vector([Fx(Hmn)+0.7,0],[0,Hmn]),
      points_joined = false,
label(["Hmn",1+0.5,Hmn/2]),
   color = black,
   label_orientation = 'horizontal,
   head_both = false,
   line_type = solid,
   head_length = 0.2,
head_angle = 5,
   color = black,
vector([0.5,(H+del3)],[0,del3]),
   label(["p_a",0.5+del3,H+del2]),
      color = black, fill_color = "#eeeeee",
rectangle([2,0],[3,2]),
  color = black,
   fill_color = "#cccccc",
  line_width=4,
rectangle([2,0],[3,1]),
            /*  GPL */
font      = "Arial",
            font_size = 16,
   color = "#0e406e",
label_orientation = 'vertical,
label(["www.k123.org.ua ",4,1.3]),
   label(["Kopanytsia Y (c)  2025",4.3,1.3]),
   color=black,point_type = filled_circle,
   point_size = 2,
   points_joined = false,
points([[0,0]]),
   label_orientation = 'horizontal,
   label(["M",0del2,0+del1]),
   points([[Hmn,Fx(Hmn)]]),
   label(["N",Hmn+del2,Fx(Hmn)]),
    /* Epura  */
  line_width=1,color=blue,line_type = short_long_dashes,
  fill_color = "#ffffff",
poly:polygon([[00.1,0],[00.1,2],[10.1,0],[00.1,0]]),
  line_width=1,color=blue,line_type = solid,
  fill_color = lightblue,
poly:polygon([[00.1,0],[00.1,1],[0.50.1,1],[10.1,0],[00.1,0]]),
   line_type = solid,
  head_length = 0.3,
head_angle = 5,
  color = blue,
  line_width=3,
  vector([fv(0)0.05,0],[fv(0)0.05,0]),
  vector([fv(1)0.05,0.25],[fv(1)0.05,0]),
  vector([fv(2)0.05,0.5],[fv(2)0.05,0]),
  vector([fv(3)0.05,0.75],[fv(3)0.05,0]),
  vector([fv(4)0.05,1],[fv(4)0.05,0]),      
   color = red,
  label(["Px",0,h_D_+del2]),
  label(["0.44",00.8,h_D_]),
   line_type = solid,
  head_length = 0.2,
head_angle = 5,
  line_width=2,
vector([0P_xvdel1,h_D_],[P_xv,0]),
   points([[0del1,h_D_]]),
points_joined = true,
   line_width=0.5,
   point_size    = 0.1,
  points([[1,h_D_],[4,h_D_]]),
   points([[2.5,0],[2.5,H]]),
   label_orientation = 'vertical,
   head_both = true,
   line_type = solid,
   head_length = 0.2,
head_angle = 5,
   vector([1,h_D_],[0,h_D_]),
   label(["h_D",1del2,h_D_/2]),
/* label_orientation = 'horizontal,
 label(["h_D = 0.56 m, P_x=44145.0 N",2,Hmn+del3]), */
   fill_color = white,
   rectangle([0,3del4],[4,3]),
   label_orientation = 'vertical,
   head_both = true,
   line_type = solid,
   head_length = 0.2,
head_angle = 5,
label_orientation = 'horizontal,
label(["h_D = 0.44 m, P_x=44145.0",2,3del2])
  )$
--> h_D;P_x;

\[\]\[\tag{%o35} 0.6111111111111112\]

\[\]\[\tag{%o36} 44145.0\]

Figure 9:
Diagram
Figure 10:D:\j_Iam_TEMP\_jh\_jh_ex2b_3a_v6_1.svg
Diagram
Figure 11:D:\j_Iam_TEMP\_jh\_jh_ex2_P_x.jpg
Diagram

P_x - чисельний алгоритм методу К123

(%i75) P_x_sum:0;dh:Hmn/n;h:0;

\[\]\[\tag{%o73} 0\]

\[\]\[\tag{%o74} \frac{1}{1000}\]

\[\]\[\tag{%o75} 0\]

(%i76) Pi_x(h):=ro·g·(Hh)·B;

\[\]\[\tag{%o76} \mathop{Pi\_ x}(h)\mathop{:=}\ensuremath{\mathrm{ro}} g\, \left( H\mathop{-}h\right) B\]

(%i78) for i:1 while h < Hmn do (Pi:Pi_x(h)·dh,P_x_sum:P_x_sum+Pi,h:h+dh);P_x_:P_x_sum;

\[\]\[\tag{%o77} \ensuremath{\mathrm{done}}\]

\[\]\[\tag{%o78} 44159.71499999999\]

(%i79) Px_test:integrate(Pi_x(hi),hi,0,Hmn);

\[\]\[\tag{%o79} 44145.0\]

(%i82) mP_x_sum:0;dh:Hmn/n;h:0;

\[\]\[\tag{%o80} 0\]

\[\]\[\tag{%o81} \frac{1}{1000}\]

\[\]\[\tag{%o82} 0\]

(%i84) for i:1 while h < Hmn do (Pi:Pi_x(h)·dh·h,mP_x_sum:mP_x_sum+Pi,h:h+dh);mP_x_:mP_x_sum;

\[\]\[\tag{%o83} \ensuremath{\mathrm{done}}\]

\[\]\[\tag{%o84} 19605.280095000024\]

(%i85) kill(h);

\[\]\[\tag{%o85} \ensuremath{\mathrm{done}}\]

(%i86) mPx_test:integrate(Pi_x(h)·(h),h,0,Hmn);

\[\]\[\tag{%o86} 19620.0\]

(%i88) h_D:mP_x_sum/P_x_sum;h_D_test:mPx_test/Px_test;

\[\]\[\tag{%o87} 0.44396301232922425\]

\[\]\[\tag{%o88} 0.4444444444444444\]

(%i89) Rel_ERROR:(100/h_D_test)·(h_D_testh_D),numer;

\[\]\[\tag{%o89} 0.10832222592453838\]

P_z - вертикальна проекція сили тиску

(%i90) kill(h);

\[\]\[\tag{%o90} \ensuremath{\mathrm{done}}\]

(%i95) ro:1000;g:9.81;H:2;B:3;Hmn:1;

\[\]\[\tag{%o91} 1000\]

\[\]\[\tag{%o92} 9.81\]

\[\]\[\tag{%o93} 2\]

\[\]\[\tag{%o94} 3\]

\[\]\[\tag{%o95} 1\]

(%i96) P_z:integrate(fp(h)·B·dh(h),h,0,Hmn);

\[\]\[\tag{%o96} 49050.0\]

(%i97) mP_z:integrate(fp(h)·B·dh(h)·(Fx(h)),h,0,Hmn);

\[\]\[\tag{%o97} 22072.5\]

(%i98) x_C:mP_z/P_z;

\[\]\[\tag{%o98} 0.45\]

(%i99) integrate(ro_·g_·(H_h_)·B_·(1/(2·sqrt(h_))),h_,0,Hmn_);

\[\]\[\mbox{}\\"Is "\ensuremath{\mathrm{Hmn\_ }}" positive, negative or zero?"positive;\]

\[\]\[\tag{%o99} \mathop{-}\left( \frac{\ensuremath{\mathrm{B\_ }} \sqrt{\ensuremath{\mathrm{Hmn\_ }}} \left( 2 \ensuremath{\mathrm{Hmn\_ }}\mathop{-}6 \ensuremath{\mathrm{H\_ }}\right) \ensuremath{\mathrm{g\_ }} \ensuremath{\mathrm{ro\_ }}}{6}\right) \]

(%i100) Pz(ro_,g_,B_,Hmn_,H_):=((B_·sqrt(Hmn_)·(2·Hmn_6·H_)·g_·ro_)/6);

\[\]\[\tag{%o100} \mathop{Pz}\left( \ensuremath{\mathrm{ro\_ }}\mathop{,}\ensuremath{\mathrm{g\_ }}\mathop{,}\ensuremath{\mathrm{B\_ }}\mathop{,}\ensuremath{\mathrm{Hmn\_ }}\mathop{,}\ensuremath{\mathrm{H\_ }}\right) \mathop{:=}\mathop{-}\left( \frac{\ensuremath{\mathrm{B\_ }} \sqrt{\ensuremath{\mathrm{Hmn\_ }}} \left( 2 \ensuremath{\mathrm{Hmn\_ }}\mathop{-}6 \ensuremath{\mathrm{H\_ }}\right) \ensuremath{\mathrm{g\_ }} \ensuremath{\mathrm{ro\_ }}}{6}\right) \]

(%i101) Pz(1000,9.81,3,1,2);

\[\]\[\tag{%o101} 49050.0\]

(%i110) integrate(ro_·g_·(H_h_)·B_·(1/(2·sqrt(h_)))·sqrt(h_),h_,0,Hmn_);

\[\]\[\tag{%o110} \mathop{-}\left( \frac{\ensuremath{\mathrm{B\_ }} \left( {{\ensuremath{\mathrm{Hmn\_ }}}^{2}}\mathop{-}2 \ensuremath{\mathrm{H\_ }} \ensuremath{\mathrm{Hmn\_ }}\right) \ensuremath{\mathrm{g\_ }} \ensuremath{\mathrm{ro\_ }}}{4}\right) \]

(%i111) mPz(ro_,g_,B_,Hmn_,H_):=((B_·(Hmn_^22·H_·Hmn_)·g_·ro_)/4);

\[\]\[\tag{%o111} \mathop{mPz}\left( \ensuremath{\mathrm{ro\_ }}\mathop{,}\ensuremath{\mathrm{g\_ }}\mathop{,}\ensuremath{\mathrm{B\_ }}\mathop{,}\ensuremath{\mathrm{Hmn\_ }}\mathop{,}\ensuremath{\mathrm{H\_ }}\right) \mathop{:=}\mathop{-}\left( \frac{\ensuremath{\mathrm{B\_ }} \left( {{\ensuremath{\mathrm{Hmn\_ }}}^{2}}\mathop{-}2 \ensuremath{\mathrm{H\_ }} \ensuremath{\mathrm{Hmn\_ }}\right) \ensuremath{\mathrm{g\_ }} \ensuremath{\mathrm{ro\_ }}}{4}\right) \]

(%i112) fx_C(ro_,g_,B_,Hmn_,H_):=(((B_·(Hmn_^22·H_·Hmn_)·g_·ro_)/4))/(((B_·sqrt(Hmn_)·(2·Hmn_6·H_)·g_·ro_)/6));

\[\]\[\tag{%o112} \mathop{fx\_ C}\left( \ensuremath{\mathrm{ro\_ }}\mathop{,}\ensuremath{\mathrm{g\_ }}\mathop{,}\ensuremath{\mathrm{B\_ }}\mathop{,}\ensuremath{\mathrm{Hmn\_ }}\mathop{,}\ensuremath{\mathrm{H\_ }}\right) \mathop{:=}\frac{\mathop{-}\left( \frac{\ensuremath{\mathrm{B\_ }} \left( {{\ensuremath{\mathrm{Hmn\_ }}}^{2}}\mathop{-}2 \ensuremath{\mathrm{H\_ }} \ensuremath{\mathrm{Hmn\_ }}\right) \ensuremath{\mathrm{g\_ }} \ensuremath{\mathrm{ro\_ }}}{4}\right) }{\mathop{-}\left( \frac{\ensuremath{\mathrm{B\_ }} \sqrt{\ensuremath{\mathrm{Hmn\_ }}} \left( 2 \ensuremath{\mathrm{Hmn\_ }}\mathop{-}6 \ensuremath{\mathrm{H\_ }}\right) \ensuremath{\mathrm{g\_ }} \ensuremath{\mathrm{ro\_ }}}{6}\right) }\]

(%i113) rat((((B_·(Hmn_^22·H_·Hmn_)·g_·ro_)/4))/(((B_·sqrt(Hmn_)·(2·Hmn_6·H_)·g_·ro_)/6)));

\[\]\[\tag{%o113)/R} \frac{3 {{\ensuremath{\mathrm{Hmn\_ }}}^{2}}\mathop{-}6 \ensuremath{\mathrm{H\_ }} \ensuremath{\mathrm{Hmn\_ }}}{4 \sqrt{\ensuremath{\mathrm{Hmn\_ }}} \ensuremath{\mathrm{Hmn\_ }}\mathop{-}12 \ensuremath{\mathrm{H\_ }} \sqrt{\ensuremath{\mathrm{Hmn\_ }}}}\]

(%i114) x_C(ro_,g_,B_,Hmn_,H_):=((3·Hmn_^26·H_·Hmn_)/(4·sqrt(Hmn_)·Hmn_12·H_·sqrt(Hmn_)));

\[\]\[\tag{%o114} \mathop{x\_ C}\left( \ensuremath{\mathrm{ro\_ }}\mathop{,}\ensuremath{\mathrm{g\_ }}\mathop{,}\ensuremath{\mathrm{B\_ }}\mathop{,}\ensuremath{\mathrm{Hmn\_ }}\mathop{,}\ensuremath{\mathrm{H\_ }}\right) \mathop{:=}\frac{3 {{\ensuremath{\mathrm{Hmn\_ }}}^{2}}\mathop{-}6 \ensuremath{\mathrm{H\_ }} \ensuremath{\mathrm{Hmn\_ }}}{4 \sqrt{\ensuremath{\mathrm{Hmn\_ }}} \ensuremath{\mathrm{Hmn\_ }}\mathop{-}12 \ensuremath{\mathrm{H\_ }} \sqrt{\ensuremath{\mathrm{Hmn\_ }}}}\]

(%i116) x_C(1000,9.81,3,1,2),numer;

\[\]\[\tag{%o116} 0.45\]

(%i103) dh(h);Fx(h);

\[\]\[\tag{%o102} \frac{1}{2 \sqrt{h}}\]

\[\]\[\tag{%o103} \sqrt{h}\]

Figure 12:D:\j_Iam_TEMP\_jh\_jh_ex2_P_z.jpg
Diagram
--> P_zv:P_z/scale;

\[\]\[\tag{%o70} 0.4905\]

--> ytop=3;

\[\]\[\tag{%o71} \ensuremath{\mathrm{ytop}}\mathop{=}3\]

--> draw2d(xrange = [1.1,4.5],
yrange = [0,3],
   font      = "Arial",
            font_size = 16,
title="Parabola",
   grid = true,
   proportional_axes=xy,
    /*   vertical W */
   line_width=0.5,
   color=blue,
   fill_color = lightblue,
  Wall:polygon([[0,0],[0,2],[1,2],[1,1],[0.75,0.75··2],[0.5,0.5··2],[0.25,0.25··2],[0,0]]),
  W:polygon([[0,0],[0,2]]),
  W:polygon([[0.25,0.25··2],[0.25,2]]),
  W:polygon([[0.5,0.5··2],[0.5,2]]),
  W:polygon([[0.75,0.75··2],[0.75,2]]),
  W:polygon([[1,1··2],[1,2]]),
   /*   -- the end W  */
line_width=4,color=black,
explicit(fh(x),x,0,Fx(H)+del1),
   line_width=4,color=grey,
explicit(fh(x),x,Hmn,Fx(H)),
   line_type = solid,
    line_width=3,color=blue,
water:polygon([[0,H],[Fx(H),H]]),
   line_width=3,color=blue,line_type = dots,
water_hm:polygon([[0,Hmn],[Fx(Hmn),Hmn]]),
   line_type = solid,
   color=black,line_width=1,
   head_both = true,
   head_length = 0.2,
   head_angle = 10,
vector([H,H+del2],[1,0]),
   label(["B",2.5,H+del3]),
   points_joined = true,
   points([[2,2],[2,2.3]]),
   points([[3,2],[3,2.3]]),
   points([[3,2],[3.3,2]]),
   points([[3,0],[3,0.3]]),
   vector([3.3,0],[0,2]),
   points_joined = false,
   label_orientation = 'vertical,
label(["H",3.2,Hmn]),
   points_joined = true,
  points([[Fx(Hmn),Hmn],[Fx(Hmn)+1,Hmn]]),
    points([[Fx(Hmn),0],[Fx(Hmn)+1,0]]),
   vector([Fx(Hmn)+0.7,0],[0,Hmn]),
      points_joined = false,
label(["Hmn",1+0.5,Hmn/2]),
   color = black,
   label_orientation = 'horizontal,
   head_both = false,
   line_type = solid,
   head_length = 0.2,
head_angle = 5,
   color = black,
vector([0.8,(H+del3)],[0,del3]),
   label(["p_a",0.8+del3,H+del2]),
      color = black, fill_color = "#eeeeee",
rectangle([2,0],[3,2]),
  color = black,
   fill_color = "#cccccc",
  line_width=4,
rectangle([2,0],[3,1]),
            /*  GPL */
font      = "Arial",
            font_size = 16,
   color = "#0e406e",
label_orientation = 'vertical,
label(["www.k123.org.ua ",4,1.3]),
   label(["Kopanytsia Y (c)  2025",4.3,1.3]),
   color=black,point_type = filled_circle,
   point_size = 2,
   points_joined = false,
points([[0,0]]),
   label_orientation = 'horizontal,
   label(["M",0del2,0+del1]),
   points([[Hmn,Fx(Hmn)]]),
   label(["N",Hmn+del2,Fx(Hmn)]),
    /* Epura  
  line_width=1,color=blue,line_type = short_long_dashes,
  fill_color = "#ffffff",
poly:polygon([[0−0.1,0],[0−0.1,2],[−1−0.1,0],[0−0.1,0]]),
  line_width=1,color=blue,line_type = solid,
  fill_color = lightblue,
poly:polygon([[0−0.1,0],[0−0.1,1],[−0.5−0.1,1],[−1−0.1,0],[0−0.1,0]]),
   line_type = solid,
  head_length = 0.3,
head_angle = 5,
  color = blue,
  line_width=3,
  vector([−fv(0)−0.05,0],[fv(0)−0.05,0]),
  vector([−fv(1)−0.05,0.25],[fv(1)−0.05,0]),
  vector([−fv(2)−0.05,0.5],[fv(2)−0.05,0]),
  vector([−fv(3)−0.05,0.75],[fv(3)−0.05,0]),
  vector([−fv(4)−0.05,1],[fv(4)−0.05,0]),       
   color = red,
  label(["Px",0,h_D+del2]),
  label(["0.56",0-0.8,h_D]),
   line_type = solid,
  head_length = 0.2,
head_angle = 5,
  line_width=2,
vector([0−P_xv-del1,h_D],[P_xv,0]),
   points([[0-del1,h_D]]),
 points_joined = true,
   line_width=0.5,
   point_size    = 0.1,
  points([[-1,h_D],[4,h_D]]),
   points([[2.5,0],[2.5,H]]),
   label_orientation = 'vertical,
   head_both = true,
   line_type = solid,
   head_length = 0.2,
head_angle = 5,
   vector([1,h_D],[0,-h_D]),
   label(["h_D",1-del2,h_D/2]),   */
  /* label_orientation = 'vertical,
color = "#654321",
label(["Vertical orientation",x_C-0.2,h_D+0.6]), */
  label_orientation = 'vertical,
    color = red,
label(["Pz",x_C0.1,h_D+0.4]),
  line_type = solid,
  head_length = 0.2,
head_angle = 5,
line_width=1.5,
   vector([x_C,(h_D+P_zv)],[0,(P_zv)]),
  label_orientation = 'horizontal,
    color = red,
  line_type = solid,
  line_width=1,
   head_both = true,
   head_length = 0.2,
   head_angle = 10,
vector([0,H+del2],[x_C,0]),
   label(["x_C",x_C/2,H+del3+del1]),
   points_joined = true,
   point_size = 0.1,
   line_type = solid,
   points([[0,H],[0,H+del3]]),
   line_type = dashes,
   points([[x_C,0],[x_C,H+del3]]),
   fill_color = white,
   rectangle([0,3del4],[4,3]),
   label_orientation = 'vertical,
   head_both = true,
   line_type = solid,
   head_length = 0.2,
head_angle = 5,
label_orientation = 'horizontal,
label(["x_C = 0.45 m, P_z=49050.0 N",2,3del2]),
   label(["0.45",x_C,del1])
)$
--> x_C;P_z;

\[\]\[\tag{%o69} 0.45\]

\[\]\[\tag{%o70} 49050.0\]

Figure 13:
Diagram
Figure 14:D:\j_Iam_TEMP\_jh\_jh_ex2b_3a_v2_F5.svg
Diagram

P_z - чисельний алгоритм методу К123

--> ro:1000;g:9.81;H:2;B:3;Hmn:1;

\[\]\[\tag{%o73} 1000\]

\[\]\[\tag{%o74} 9.81\]

\[\]\[\tag{%o75} 2\]

\[\]\[\tag{%o76} 3\]

\[\]\[\tag{%o77} 1\]

--> P_z_sum:0;dh:Hmn/n;h:0;

\[\]\[\tag{%o78} 0\]

\[\]\[\tag{%o79} \frac{1}{1000}\]

\[\]\[\tag{%o80} 0\]

coordinate - x {for h=i*dh x=sqrt(h)}
--> fB(i,dh):=sqrt(i·dh); fB(1,dh),numer;

\[\]\[\tag{%o81} \mathop{fB}\left( i\mathop{,}\ensuremath{\mathrm{dh}}\right) \mathop{:=}\sqrt{i\, \ensuremath{\mathrm{dh}}}\]

\[\]\[\tag{%o82} 0.03162277660168379\]

--> Pi_x(h):=ro·g·(Hh)·B; Pi_x(0.2);

\[\]\[\tag{%o83} \mathop{Pi\_ x}(h)\mathop{:=}\ensuremath{\mathrm{ro}} g\, \left( H\mathop{-}h\right) B\]

\[\]\[\tag{%o84} 52974.0\]

--> fdb(i,dh):=(fB((i+1),dh)fB((i),dh))/dh;fdb(1000,dh),numer;

\[\]\[\tag{%o85} \mathop{fdb}\left( i\mathop{,}\ensuremath{\mathrm{dh}}\right) \mathop{:=}\frac{\mathop{fB}\left( i\mathop{+}1\mathop{,}\ensuremath{\mathrm{dh}}\right) \mathop{-}\mathop{fB}\left( i\mathop{,}\ensuremath{\mathrm{dh}}\right) }{\ensuremath{\mathrm{dh}}}\]

\[\]\[\tag{%o86} 0.4998750624609638\]

--> for i: 0 while h < Hmn do (db:fdb(i,dh),Pi:Pi_x(h)·db·dh,P_z_sum:P_z_sum+Pi,h:h+dh)$
--> P_z_:P_z_sum,numer;h;

\[\]\[\tag{%o88} 49064.52275520602\]

\[\]\[\tag{%o89} 1\]

FOR MOMENT P_z coordinate - x {for h=i*dh x=sqrt(h)}
--> mP_z_sum:0;dh:Hmn/n;h:0;

\[\]\[\tag{%o90} 0\]

\[\]\[\tag{%o91} \frac{1}{1000}\]

\[\]\[\tag{%o92} 0\]

--> for i: 0 while h < Hmn do (db:fdb(i,dh),Pi:Pi_x(h)·db·dh·fB(i,dh),mP_z_sum:mP_z_sum+Pi,h:h+dh)$
--> mP_z_:mP_z_sum,numer;h;

\[\]\[\tag{%o94} 22003.335303355238\]

\[\]\[\tag{%o95} 1\]

--> x_C_:mP_z_/P_z_,numer; x_C;

\[\]\[\tag{%o96} 0.44845713496765977\]

\[\]\[\tag{%o97} 0.45\]

--> Rel_ERROR:(100/x_C)·(x_Cx_C_),numer;

\[\]\[\tag{%o98} 0.3428588960756102\]

P - Сила гідростатичного тиску

--> P_x;P_z;

\[\]\[\tag{%o99} 44145.0\]

\[\]\[\tag{%o100} 49050.0\]

--> P:sqrt(P_x··2+P_z··2);

\[\]\[\tag{%o101} 65990.02595089655\]

--> phi_rad:atan(P_z/P_x),numer;

\[\]\[\tag{%o102} 0.83798122500839\]

--> phi_grad:atan(P_z/P_x)·(180/%pi),numer;

\[\]\[\tag{%o103} 48.01278750418334\]

--> d:tan(P_z/P_x);

\[\]\[\tag{%o104} 2.0199703317182265\]

--> k:P_z/P_x;

\[\]\[\tag{%o105} 1.1111111111111112\]

Проекції вектора сили й координати (Projections of the force vector and coordinates)
--> scale:100000;

\[\]\[\tag{%o106} 100000\]

--> P_xv:P_x/scale;P_zv:P_z/scale;Pv:P/scale;

\[\]\[\tag{%o107} 0.44145\]

\[\]\[\tag{%o108} 0.4905\]

\[\]\[\tag{%o109} 0.6599002595089656\]

--> kill(D);

\[\]\[\tag{%o110} \ensuremath{\mathrm{done}}\]

--> h_D;x_C;phi_rad;k;

\[\]\[\tag{%o111} 0.44396301232922425\]

\[\]\[\tag{%o112} 0.45\]

\[\]\[\tag{%o113} 0.83798122500839\]

\[\]\[\tag{%o114} 1.1111111111111112\]

--> eq:h_D=k·x_C+D;

\[\]\[\tag{%o106} 0.44396301232922425\mathop{=}D\mathop{-}0.5\]

--> Di:h_D+k·x_C;

\[\]\[\tag{%o115} 0.9439630123292242\]

--> solve(eq,D);

\[\]\[rat: replaced 0.9439630123292242 by 2832833/3001000 = 0.9439630123292236\]

\[\]\[\tag{%o107} \left[ D\mathop{=}\frac{2832833}{3001000}\right] \]

--> D:2832833/3001000,numer;

\[\]\[\tag{%o108} 0.9439630123292236\]

--> y(x):=k·x+D;

\[\]\[\tag{%o109} \mathop{y}(x)\mathop{:=}\mathop{-}k x\mathop{+}D\]

--> y(0.45);

\[\]\[\tag{%o110} 0.44396301232922364\]

--> y1(x):=x··2;

\[\]\[\tag{%o111} \mathop{y1}(x)\mathop{:=}{{x}^{2}}\]

--> eq1:k·x+D=x··2;

\[\]\[\tag{%o112} 0.9439630123292236\mathop{-}1.1111111111111112 x\mathop{=}{{x}^{2}}\]

--> solutions:solve([eq1],[x]);

\[\]\[rat: replaced 0.9439630123292236 by 2832833/3001000 = 0.9439630123292236 \]\[rat: replaced -1.1111111111111112 by -10/9 = -1.1111111111111112\]

\[\]\[\tag{%o113} \left[ x\mathop{=}\mathop{-}\left( \frac{\sqrt{9137579034730}\mathop{+}1500500}{2700900}\right) \mathop{,}x\mathop{=}\frac{\sqrt{9137579034730}\mathop{-}1500500}{2700900}\right] \]

--> xvals: map(rhs, solutions);

\[\]\[\tag{%o114} \left[ \mathop{-}\left( \frac{\sqrt{9137579034730}\mathop{+}1500500}{2700900}\right) \mathop{,}\frac{\sqrt{9137579034730}\mathop{-}1500500}{2700900}\right] \]

--> x_coord:xvals[2],numer;

\[\]\[\tag{%o115} 0.5636428127589562\]

--> h_coord:y1(x_coord);

\[\]\[\tag{%o116} 0.3176932203748278\]

--> xx:x_coordP_xv;hh:h_coord+P_zv;

\[\]\[\tag{%o117} 0.12219281275895622\]

\[\]\[\tag{%o118} 0.8081932203748278\]

Numer method
--> f1(x):=k·x+Di;f2(x):=x··2;h1:0;h2:0;ni:1000;x1:0;x2:sqrt(Hmn);xi:x2/ni;j:0;

\[\]\[\tag{%o218} \mathop{f1}(x)\mathop{:=}\mathop{-}k x\mathop{+}\ensuremath{\mathrm{Di}}\]

\[\]\[\tag{%o219} \mathop{f2}(x)\mathop{:=}{{x}^{2}}\]

\[\]\[\tag{%o220} 0\]

\[\]\[\tag{%o221} 0\]

\[\]\[\tag{%o222} 1000\]

\[\]\[\tag{%o223} 0\]

\[\]\[\tag{%o224} 1\]

\[\]\[\tag{%o225} \frac{1}{1000}\]

\[\]\[\tag{%o226} 0\]

--> Di;f1(xi·1000),numer;f2(xi·1000),numer;

\[\]\[\tag{%o233} 0.9439630123292242\]

\[\]\[\tag{%o234} \mathop{-}0.16714809878188697\]

\[\]\[\tag{%o235} 1.0\]

--> for j: 1 while f1(xi·j)f2(xi·j)>0 do (j: j+1,x2:xi·j);

\[\]\[\tag{%o241} \ensuremath{\mathrm{done}}\]

--> x2,numer;

\[\]\[\tag{%o244} 0.564\]

--------- the end NM
--> plot2d([y1(x),y(x),[discrete,[x_coord],[h_coord]],
       [discrete,[x_coord,xx],[h_coord,hh]],
       [discrete,[x_coord,xx],[h_coord,h_coord]],
       [discrete,[x_coord,x_coord],[h_coord,hh]],
   [discrete,[0,2],[2,2]]],[x,0,2.1],[y,0,2.1],
   [style, [lines, 5,5], [lines, 3,1], [points, 5,2],[lines, 3,2],[lines, 3,2],[lines, 3,2],
       [lines, 3,1]]);

\[\]\[\] \texttt{%error plot2d: expression evaluates to non-numeric value everywhere in plotting range. }\[\]\[\] \texttt{%error plot2d: expression evaluates to non-numeric value everywhere in plotting range. }\[\]\[\] \texttt{%error Warning: none of the points have numerical values. }\[\]\[\] \texttt{%error Warning: none of the points have numerical values. }\[\]\[\] \texttt{%error Warning: none of the points have numerical values. }\[\]\[\] \texttt{%error Warning: none of the points have numerical values.}\[\]

\[\]\[\tag{%o245} false\]

Figure 15:
Diagram
Figure 16:D:\j_Iam_TEMP\_jh\_jh_ex2b_3a_v2_F6.svg
Diagram

Draw

--> /*  y = 1-1-4 */;
--> fv(y):=(20.25·y)/2;

\[\]\[\tag{%o120} \mathop{fv}(y)\mathop{:=}\frac{2\mathop{-}0.25 y}{2}\]

draw 4 x 3.5
--> draw2d(xrange = [1.1,4],
yrange = [0,3.5],
   font      = "Arial",
            font_size = 16,
title="Parabola",
   grid = true,
   proportional_axes=xy,
    /*   vertical W */
   fill_color = lightblue,
   Wall:polygon([[0,0],[0,2],[1,2],[1,1],[0.75,0.75··2],[0.5,0.5··2],[0.25,0.25··2],[0,0]]),
   W:polygon([[0,0],[0,2]]),
   W:polygon([[0.25,0.25··2],[0.25,2]]),
   W:polygon([[0.5,0.5··2],[0.5,2]]),
   W:polygon([[0.75,0.75··2],[0.75,2]]),
   W:polygon([[1,1··2],[1,2]]),
line_width=4,color=black,
explicit(y1(x),x,0,1.44),
   line_width=4,color=grey,
explicit(y1(x),x,1,sqrt(2)),
   color=red,line_width=1,
   explicit(y(x),x,0,x_coord),
   line_width=3,color=blue,
poly:polygon([[0,2],[sqrt(2),2]]),
   color=black,line_width=1,
   head_both = true,
   head_length = 0.2,
   head_angle = 10,
vector([2,2.2],[1,0]),
   label(["B",2.5,2.3]),
   points_joined = true,
   points([[2,2],[2,2.3]]),
   points([[3,2],[3,2.3]]),
   points([[3,2],[3.3,2]]),
   points([[3,0],[3,0.3]]),
   vector([3.3,0],[0,2]),
   points_joined = false,
   label_orientation = 'vertical,
label(["H",3.2,1]),
   label_orientation = 'horizontal,
   head_both = false,
   line_type = solid,
   head_length = 0.2,
head_angle = 5,
   color = black,
vector([Fx(H)·2/3,(H+del3)],[0,0.3]),
   label(["p_a",Fx(H)·2/3+del3,H+del2]),
line_width=3,color=blue,line_type = dots,
poly:polygon([[0,1],[1,1]]),
color=black,point_type = filled_circle,point_size = 1.5,
points([[0,0],[1,1]]),
color=red,point_type = filled_circle,
points([[x_coord,h_coord],[x_C,h_D]]),
/*    color = red,
label(["Proection center pressure",x_C+0.7,h_coord]),
   color = navy,
label(["Horizontal proection vector (default)",x_C+1.3,h_D+0.1]), */
       color = red,
   label(["(0.56,0.31)",x_C+del5+del2,h_Ddel1]),
   label(["(0.45,0.44)",x_C+del5,h_D+del1]),
   color = black,
   label(["Px",x_C0.3,h_D+0.1]),
   /* label_orientation = 'vertical,
color = "#654321",
label(["Vertical orientation",x_C-0.2,h_D+0.6]), */
   label_orientation = 'vertical,
label(["Pz",x_C0.1,h_D+0.4]),
   line_type = solid,
   head_length = 0.2,
head_angle = 5,
   color = black,
   line_width=1.5,
vector([x_C,(h_D+P_zv)],[0,(P_zv)]),
vector([x_CP_xv,h_D],[P_xv,0]),
vector([(x_CP_xv),(h_D+P_zv)],[P_xv,P_zv]),
color = black, fill_color = "#eeeeee",
rectangle([2,0],[3,2]),
   color = black,
    fill_color = "#cccccc",
   line_width=4,
rectangle([2,0],[3,1]),
   /* Epura  */
   line_width=1,color=blue,line_type = short_long_dashes,
   fill_color = "#ffffff",
poly:polygon([[00.1,0],[00.1,2],[10.1,0],[00.1,0]]),
   line_width=1,color=blue,line_type = solid,
   fill_color = lightblue,
poly:polygon([[00.1,0],[00.1,1],[0.50.1,1],[10.1,0],[00.1,0]]),
   /*   vertical W
   Wall:polygon([[0,0],[0,2],[1,2],[1,1],[0.75,0.75**2],[0.5,0.5**2],[0.25,0.25**2],[0,0]]),
   W:polygon([[0,0],[0,2]]),
   W:polygon([[0.25,0.25**2],[0.25,2]]),
   W:polygon([[0.5,0.5**2],[0.5,2]]),
   W:polygon([[0.75,0.75**2],[0.75,2]]),
   W:polygon([[1,1**2],[1,2]]),  */
   color = black, fill_color = "#cccccc",
rectangle([0.1,0],[0.05,1]),
   /*  Epura vectors */
line_type = solid,
   head_length = 0.3,
head_angle = 5,
   color = blue,
   line_width=3,
   vector([fv(0)0.05,0],[fv(0)0.05,0]),
   vector([fv(1)0.05,0.25],[fv(1)0.05,0]),
   vector([fv(2)0.05,0.5],[fv(2)0.05,0]),
   vector([fv(3)0.05,0.75],[fv(3)0.05,0]),
   vector([fv(4)0.05,1],[fv(4)0.05,0]),
     /*  Angle "phi"
   color = black, fill_color  = "#eeeeee",
    line_width=0.5,
    head_angle  = 180,
   vector([h_D,x_C],[-P_x/45000,P_z/45000]),
   vector([h_D-P_x/45000,x_C+P_z/45000],[0.5,0]), */
   
  
           /*  GPL */
font      = "Arial",
            font_size = 16,
   color = "#0e406e",
label_orientation = 'vertical,
label(["www.k123.org.ua ",3.5,1.3]),
   label(["Kopanytsia Y (c)  2025",3.8,1.3]),
   fill_color = white,
   rectangle([0,3.5del5·2],[4,3.5]),
   label_orientation = 'vertical,
   head_both = true,
   line_type = solid,
   head_length = 0.2,
head_angle = 5,
label_orientation = 'horizontal,
label(["x_C = 0.45 m, P_z=49050.0 N;",2,3.5del5]),
label(["h_D = 0.44 m, P_x=44145.0 N;",2,3.5del2]),
   label(["x = 0.56 m, y=0.31 m, P=65990 N.",2,3.5del3del5]),
   label(["0.45",x_C,del1])
)$
--> P;

\[\]\[\tag{%o127} 65990.02595089655\]

--> h_D;x_C;x_CP_x/40000;h_D+P_x/40000;

\[\]\[\tag{%o128} 0.44396301232922425\]

\[\]\[\tag{%o129} 0.45\]

\[\]\[\tag{%o130} \mathop{-}0.6536250000000001\]

\[\]\[\tag{%o131} 1.5475880123292243\]

--> x_coord;h_coord;

\[\]\[\tag{%o175} 0.5636428127589562\]

\[\]\[\tag{%o176} 0.3176932203748278\]

Figure 17:
Diagram
Figure 18:D:\j_Iam_TEMP\_jh\_jh_ex2b_3a_v2_F7.svg
Diagram
--> hh;h_D;

\[\]\[\tag{%o122} 0.8081932203748278\]

\[\]\[\tag{%o123} 0.44396301232922425\]

-----------------------------

Plot2d
--> fh_D(x):=h_D_;

\[\]\[\tag{%o124} \mathop{fh\_ D}(x)\mathop{:=}\ensuremath{\mathrm{h\_ D\_ }}\]

--> plot2d([fh(x),fHab(x),fH(x),fh_D(x),[discrete,[0.44,0.44],[0,1]],
       [discrete,[0.44],[0.45]],vector([0.44,0.45],[0,1])],[x,0,1.5],
   [legend, "parabola","Top_box", "Water", "P_x", "P_z", "point"],
   [style, [lines, 5,5], lines, [lines, 3,1], lines, lines, [points, 3,2]],
   [point_type, circle]);

\[\]\[plot2d: expression evaluates to non-numeric value everywhere in plotting range.\]

\[\]\[\tag{%o125} false\]

Figure 19:
Diagram
Figure 20:D:\j_Iam_TEMP\_jh\_jh_ex2b_3a_v2_F8.svg
Diagram
eq:y=x_C;plot2d([fh(x),fHab(x),fH(x),fh_D(x),eq],[x,0,2],[y,0,4]);

Answer

--> P_x;P_z;P;h_D_;x_C;x_coord;h_coord;phi_grad;

\[\]\[\tag{%o126} 44145.0\]

\[\]\[\tag{%o127} 49050.0\]

\[\]\[\tag{%o128} 65990.02595089655\]

\[\]\[\tag{%o129} 0.4444444444444444\]

\[\]\[\tag{%o130} 0.45\]

\[\]\[\tag{%o131} 0.5636428127589562\]

\[\]\[\tag{%o132} 0.3176932203748278\]

\[\]\[\tag{%o133} 48.01278750418334\]

Figure 21:D:\j_Iam_TEMP\_jh\_jh_ex2.jpg
Diagram
Scale screen 300 px
--> P_x/300;P_z/300;P/300;

\[\]\[\tag{%o134} 147.15\]

\[\]\[\tag{%o135} 163.5\]

\[\]\[\tag{%o136} 219.9667531696552\]

--> P_:sqrt(P_x_··2+P_z_··2);

\[\]\[\tag{%o137} 66010.66445717201\]

REL_ERRORS

--> Rel_ERROR_P_x:(100/P_x)·(P_xP_x_),numer;

\[\]\[\tag{%o138} \mathop{-}0.033333333333308936\]

--> Rel_ERROR_mP_x_:(100/mP_x_down)·(mP_x_downmP_x_),numer;

\[\]\[\tag{%o139} 0.0750249999998791\]

--> Rel_ERROR_mP_z:(100/mP_z)·(mP_zmP_z_),numer;

\[\]\[\tag{%o140} 0.31335234633486214\]

--> Rel_ERROR_P_z:(100/P_z)·(P_zP_z_),numer;

\[\]\[\tag{%o141} \mathop{-}0.029608063620829527\]

--> Rel_ERROR_P:(100/P)·(PP_),numer;

\[\]\[\tag{%o142} \mathop{-}0.031275190421675786\]


Created with wxMaxima.

The source of this Maxima session can be downloaded here.