D:\j_Iam_TEMP\_jh\_jh_ex2b_3.wxmx

Умова

Визначити силу гідростатичного тиску на бокову грань "MN" параболоїдального каналу висотою Hmn = 1 метр та шириною B = 3 метри. Рівень води у каналі H = 2 метри.
Аналітичні та чисельні розрахунки методом K123.
(%i1) kill(all);

\[\]\[\tag{%o0} \ensuremath{\mathrm{done}}\]

(%i1) load(draw)$
(%i7) ro:1000;g:9.81;H:2;B:3;Hmn:1;n:1000;

\[\]\[\tag{%o2} 1000\]

\[\]\[\tag{%o3} 9.81\]

\[\]\[\tag{%o4} 2\]

\[\]\[\tag{%o5} 3\]

\[\]\[\tag{%o6} 1\]

\[\]\[\tag{%o7} 1000\]

(%i12) fh(x):=x··2;fHab(x):=Hmn;fH(x):=H;Fx(h):=sqrt(h);diff(Fx(h),h);

\[\]\[\tag{%o8} \mathop{fh}(x)\mathop{:=}{{x}^{2}}\]

\[\]\[\tag{%o9} \mathop{fHab}(x)\mathop{:=}\ensuremath{\mathrm{Hmn}}\]

\[\]\[\tag{%o10} \mathop{fH}(x)\mathop{:=}H\]

\[\]\[\tag{%o11} \mathop{Fx}(h)\mathop{:=}\sqrt{h}\]

\[\]\[\tag{%o12} \frac{1}{2 \sqrt{h}}\]

(%i13) dh(h):=1/(2·sqrt(h));

\[\]\[\tag{%o13} \mathop{dh}(h)\mathop{:=}\frac{1}{2 \sqrt{h}}\]

(%i14) plot2d([fh(x),fHab(x),fH(x)],[x,0,2]);

\[\]\[\tag{%o14} false\]

Figure 1:D:\j_Iam_TEMP\_jh\_jh_ex2.png
Diagram
(%i15) plot2d(Fx(h),[h,0,H], [color,black],[style, [lines, 5,5]]);

\[\]\[\tag{%o15} false\]

Figure 2:
Diagram
(%i16) fp(h):=ro·g·(Hh);

\[\]\[\tag{%o16} \mathop{fp}(h)\mathop{:=}\ensuremath{\mathrm{ro}} g\, \left( H\mathop{-}h\right) \]

P_x - горизонтальна проекція сили тиску

(%i17) P_x:integrate(fp(h)·B,h,0,Hmn);

\[\]\[\tag{%o17} 44145.0\]

(%i18) mP_x:integrate(fp(h)·(Hh)·B·h,h,0,Hmn);

\[\]\[\tag{%o18} 26977.5\]

(%i19) mP_x_down:integrate(fp(h)·B·h,h,0,Hmn);

\[\]\[\tag{%o19} 19620.0\]

(%i20) h_D:mP_x/P_x;

\[\]\[\tag{%o20} 0.6111111111111112\]

(%i21) h_D_:mP_x_down/P_x;

\[\]\[\tag{%o21} 0.4444444444444444\]

(%i22) h_D+h_D_;

\[\]\[\tag{%o22} 1.0555555555555556\]

Figure 3:D:\j_Iam_TEMP\_jh\_jh_ex2_P_x.jpg
Diagram

P_x - чисельний алгоритм методу К123

(%i25) P_x_sum:0;dh:Hmn/n;h:0;

\[\]\[\tag{%o23} 0\]

\[\]\[\tag{%o24} \frac{1}{1000}\]

\[\]\[\tag{%o25} 0\]

(%i26) Pi_x(h):=ro·g·(Hh)·B;

\[\]\[\tag{%o26} \mathop{Pi\_ x}(h)\mathop{:=}\ensuremath{\mathrm{ro}} g\, \left( H\mathop{-}h\right) B\]

(%i28) for i:1 while h < Hmn do (Pi:Pi_x(h)·dh,P_x_sum:P_x_sum+Pi,h:h+dh);P_x_:P_x_sum;

\[\]\[\tag{%o27} \ensuremath{\mathrm{done}}\]

\[\]\[\tag{%o28} 44159.71499999999\]

(%i29) Px_test:integrate(Pi_x(hi),hi,0,Hmn);

\[\]\[\tag{%o29} 44145.0\]

(%i32) mP_x_sum:0;dh:Hmn/n;h:0;

\[\]\[\tag{%o30} 0\]

\[\]\[\tag{%o31} \frac{1}{1000}\]

\[\]\[\tag{%o32} 0\]

(%i34) for i:1 while h < Hmn do (Pi:Pi_x(h)·dh·h,mP_x_sum:mP_x_sum+Pi,h:h+dh);mP_x_:mP_x_sum;

\[\]\[\tag{%o33} \ensuremath{\mathrm{done}}\]

\[\]\[\tag{%o34} 19605.280095000024\]

(%i35) kill(h);

\[\]\[\tag{%o35} \ensuremath{\mathrm{done}}\]

(%i36) mPx_test:integrate(Pi_x(h)·(h),h,0,Hmn);

\[\]\[\tag{%o36} 19620.0\]

(%i38) h_D:mP_x_sum/P_x_sum;h_D_test:mPx_test/Px_test;

\[\]\[\tag{%o37} 0.44396301232922425\]

\[\]\[\tag{%o38} 0.4444444444444444\]

(%i39) Rel_ERROR:(100/h_D_test)·(h_D_testh_D),numer;

\[\]\[\tag{%o39} 0.10832222592453838\]

P_z - вертикальна проекція сили тиску

(%i40) kill(h);

\[\]\[\tag{%o40} \ensuremath{\mathrm{done}}\]

(%i45) ro:1000;g:9.81;H:2;B:3;Hmn:1;

\[\]\[\tag{%o41} 1000\]

\[\]\[\tag{%o42} 9.81\]

\[\]\[\tag{%o43} 2\]

\[\]\[\tag{%o44} 3\]

\[\]\[\tag{%o45} 1\]

(%i46) P_z:integrate(fp(h)·B·dh(h),h,0,Hmn);

\[\]\[\tag{%o46} 49050.0\]

(%i47) mP_z:integrate(fp(h)·B·dh(h)·(Fx(h)),h,0,Hmn);

\[\]\[\tag{%o47} 22072.5\]

(%i48) x_C:mP_z/P_z;

\[\]\[\tag{%o48} 0.45\]

Figure 4:D:\j_Iam_TEMP\_jh\_jh_ex2_P_z.jpg
Diagram

P_z - чисельний алгоритм методу К123

(%i53) ro:1000;g:9.81;H:2;B:3;Hmn:1;

\[\]\[\tag{%o49} 1000\]

\[\]\[\tag{%o50} 9.81\]

\[\]\[\tag{%o51} 2\]

\[\]\[\tag{%o52} 3\]

\[\]\[\tag{%o53} 1\]

(%i56) P_z_sum:0;dh:Hmn/n;h:0;

\[\]\[\tag{%o54} 0\]

\[\]\[\tag{%o55} \frac{1}{1000}\]

\[\]\[\tag{%o56} 0\]

coordinate - x {for h=i*dh x=sqrt(h)}
(%i58) fB(i,dh):=sqrt(i·dh); fB(1,dh),numer;

\[\]\[\tag{%o57} \mathop{fB}\left( i\mathop{,}\ensuremath{\mathrm{dh}}\right) \mathop{:=}\sqrt{i\, \ensuremath{\mathrm{dh}}}\]

\[\]\[\tag{%o58} 0.03162277660168379\]

(%i60) Pi_x(h):=ro·g·(Hh)·B; Pi_x(0.2);

\[\]\[\tag{%o59} \mathop{Pi\_ x}(h)\mathop{:=}\ensuremath{\mathrm{ro}} g\, \left( H\mathop{-}h\right) B\]

\[\]\[\tag{%o60} 52974.0\]

(%i62) fdb(i,dh):=(fB((i+1),dh)fB((i),dh))/dh;fdb(1000,dh),numer;

\[\]\[\tag{%o61} \mathop{fdb}\left( i\mathop{,}\ensuremath{\mathrm{dh}}\right) \mathop{:=}\frac{\mathop{fB}\left( i\mathop{+}1\mathop{,}\ensuremath{\mathrm{dh}}\right) \mathop{-}\mathop{fB}\left( i\mathop{,}\ensuremath{\mathrm{dh}}\right) }{\ensuremath{\mathrm{dh}}}\]

\[\]\[\tag{%o62} 0.4998750624609638\]

(%i63) for i: 0 while h < Hmn do (db:fdb(i,dh),Pi:Pi_x(h)·db·dh,P_z_sum:P_z_sum+Pi,h:h+dh)$
(%i65) P_z_:P_z_sum,numer;h;

\[\]\[\tag{%o64} 49064.52275520602\]

\[\]\[\tag{%o65} 1\]

FOR MOMENT P_z coordinate - x {for h=i*dh x=sqrt(h)}
(%i68) mP_z_sum:0;dh:Hmn/n;h:0;

\[\]\[\tag{%o66} 0\]

\[\]\[\tag{%o67} \frac{1}{1000}\]

\[\]\[\tag{%o68} 0\]

(%i69) for i: 0 while h < Hmn do (db:fdb(i,dh),Pi:Pi_x(h)·db·dh·fB(i,dh),mP_z_sum:mP_z_sum+Pi,h:h+dh)$
(%i71) mP_z_:mP_z_sum,numer;h;

\[\]\[\tag{%o70} 22003.335303355238\]

\[\]\[\tag{%o71} 1\]

(%i73) x_C_:mP_z_/P_z_,numer; x_C;

\[\]\[\tag{%o72} 0.44845713496765977\]

\[\]\[\tag{%o73} 0.45\]

(%i74) Rel_ERROR:(100/x_C)·(x_Cx_C_),numer;

\[\]\[\tag{%o74} 0.3428588960756102\]

P - Сила гідростатичного тиску

(%i76) P_x;P_z;

\[\]\[\tag{%o75} 44145.0\]

\[\]\[\tag{%o76} 49050.0\]

(%i77) P:sqrt(P_x··2+P_z··2);

\[\]\[\tag{%o77} 65990.02595089655\]

(%i78) phi_rad:atan(P_z/P_x),numer;

\[\]\[\tag{%o78} 0.83798122500839\]

(%i79) phi_grad:atan(P_z/P_x)·(180/%pi),numer;

\[\]\[\tag{%o79} 48.01278750418334\]

(%i80) d:tan(P_z/P_x);

\[\]\[\tag{%o80} 2.0199703317182265\]

(%i81) k:P_z/P_x;

\[\]\[\tag{%o81} 1.1111111111111112\]

Проекції вектора сили й координати (Projections of the force vector and coordinates)
(%i82) scale:100000;

\[\]\[\tag{%o82} 100000\]

(%i85) P_xv:P_x/scale;P_zv:P_z/scale;Pv:P/scale;

\[\]\[\tag{%o83} 0.44145\]

\[\]\[\tag{%o84} 0.4905\]

\[\]\[\tag{%o85} 0.6599002595089656\]

(%i86) kill(D);

\[\]\[\tag{%o86} \ensuremath{\mathrm{done}}\]

(%i90) h_D;x_C;phi_rad;k;

\[\]\[\tag{%o87} 0.44396301232922425\]

\[\]\[\tag{%o88} 0.45\]

\[\]\[\tag{%o89} 0.83798122500839\]

\[\]\[\tag{%o90} 1.1111111111111112\]

(%i91) eq:h_D=k·x_C+D;

\[\]\[\tag{%o91} 0.44396301232922425\mathop{=}D\mathop{-}0.5\]

(%i92) solve(eq,D);

\[\]\[rat: replaced 0.9439630123292242 by 2832833/3001000 = 0.9439630123292236\]

\[\]\[\tag{%o92} \left[ D\mathop{=}\frac{2832833}{3001000}\right] \]

(%i93) D:2832833/3001000,numer;

\[\]\[\tag{%o93} 0.9439630123292236\]

(%i94) y(x):=k·x+D;

\[\]\[\tag{%o94} \mathop{y}(x)\mathop{:=}\mathop{-}k x\mathop{+}D\]

(%i95) y(0.45);

\[\]\[\tag{%o95} 0.44396301232922364\]

(%i96) y1(x):=x··2;

\[\]\[\tag{%o96} \mathop{y1}(x)\mathop{:=}{{x}^{2}}\]

(%i97) eq1:k·x+D=x··2;

\[\]\[\tag{%o97} 0.9439630123292236\mathop{-}1.1111111111111112 x\mathop{=}{{x}^{2}}\]

(%i98) solve([eq1],[x]);

\[\]\[rat: replaced 0.9439630123292236 by 2832833/3001000 = 0.9439630123292236 \]\[rat: replaced -1.1111111111111112 by -10/9 = -1.1111111111111112\]

\[\]\[\tag{%o98} \left[ x\mathop{=}\mathop{-}\left( \frac{\sqrt{9137579034730}\mathop{+}1500500}{2700900}\right) \mathop{,}x\mathop{=}\frac{\sqrt{9137579034730}\mathop{-}1500500}{2700900}\right] \]

(%i99) x_coord:(sqrt(9137579034730)1500500)/2700900,numer;

\[\]\[\tag{%o99} 0.5636428127589562\]

(%i100) h_coord:y1(x_coord);

\[\]\[\tag{%o100} 0.3176932203748278\]

(%i102) xx:x_coordP_xv;hh:h_coord+P_zv;

\[\]\[\tag{%o101} 0.12219281275895622\]

\[\]\[\tag{%o102} 0.8081932203748278\]

(%i103) plot2d([y1(x),y(x),[discrete,[x_coord],[h_coord]],
       [discrete,[x_coord,xx],[h_coord,hh]],
       [discrete,[x_coord,xx],[h_coord,h_coord]],
       [discrete,[x_coord,x_coord],[h_coord,hh]],
   [discrete,[0,2],[2,2]]],[x,0,2.1],[y,0,2.1],
   [style, [lines, 5,5], [lines, 3,1], [points, 5,2],[lines, 3,2],[lines, 3,2],[lines, 3,2],
       [lines, 3,1]]);

\[\]\[plot2d: some values will be clipped. \]\[plot2d: some values will be clipped.\]

\[\]\[\tag{%o103} false\]

Figure 5:
Diagram

Draw

(%i104) draw2d(
proportional_axes=xy,
line_width=2,color=black,
explicit(y1(x),x,0.1,2),
color=black,nticks=160,
implicit(sin(x·y)=0.1,x,1,1,y,1,1),
color=blue,nticks=160,
parametric(cos(t),sin(t),t,0,2·%pi),
color=orange,nticks=160,
polar(0.1+0.8·sin(3·t),t,0,%pi),
   line_width=7,color=blue,
poly:polygon([[2,4],[2,6],[4,8],[6,8],[8,6],[8,4],[6,2],[4,2]]),
pnts:points([1,3,5,7,9,9,9,9,9,7,5,3,1,1,1,1],
[1,1,1,1,1,3,5,7,9,9,9,9,9,7,5,3]),
rct:rectangle([1,2],[6,7]),
ell:ellipse(6,6,3,2,0,360),
diagr:bars([7,2,1],[5,5,1],[3,7,1],[1,6,1]),
   line_width=2,color=green,
[v1,v2,v3]:[vector([8,8],[6,0]),
vector([8,8],[6,6]),vector([2,8],[0,6])],
   color=blue,
text:label(["Diagram",5,1],
["Point on multybox",5,1],
["Vector",5,9],
["Rectangle and elips",5,9]))$

\[\]\[rat: replaced -0.1 by -1/10 = -0.1\]

Figure 6:
Diagram
(%i106) draw2d(
title="Parabola",
   grid = true,
   proportional_axes=xy,
line_width=4,color=black,
explicit(y1(x),x,0,1.44),
   color=black,line_width=1,
   explicit(y(x),x,0,x_coord),
   line_width=2,color=blue,
poly:polygon([[0,2],[1.4,2]]),
line_width=2,color=red,
poly:polygon([[0,1],[1,1]]),
   pnts:points([0,1],[0,1]),
   color=black,fill_color = white,
   rectangle([0.02,0.02],[0.02,0.02]),
   rectangle([0.98,0.98],[1.02,1.02])
)$
Figure 7:
Diagram
(%i107) draw(
delay = 1,
file_name = "zzz",
terminal = 'animated_gif,
gr2d(explicit(x^2,x,1,1)),
gr2d(explicit(x^3,x,1,1)),
gr2d(explicit(x^4,x,1,1)));

\[\]\[\tag{%o107} \left[ \mathop{gr2d}\left( \ensuremath{\mathrm{explicit}}\right) \mathop{,}\mathop{gr2d}\left( \ensuremath{\mathrm{explicit}}\right) \mathop{,}\mathop{gr2d}\left( \ensuremath{\mathrm{explicit}}\right) \right] \]

(%i109) draw2d(xrange = [0,10],
yrange = [0,9],
head_length = 0.7,
head_angle = 10,
vector([1,1],[0,6]),
head_angle = 20,
vector([2,1],[0,6]),
head_angle = 30,
vector([3,1],[0,6]),
head_angle = 40,
vector([4,1],[0,6]),
head_angle = 60,
vector([5,1],[0,6]),
head_angle = 90,
vector([6,1],[0,6]),
head_angle = 120,
vector([7,1],[0,6]),
head_angle = 160,
vector([8,1],[0,6]),
head_angle = 180,
vector([9,1],[0,6]) )$
Figure 8:
Diagram
(%i110) draw2d(xrange = [0,8],
yrange = [0,8],
head_length = 0.7,
vector([1,1],[6,0]),
head_both = true,
vector([1,7],[6,0]) )$
Figure 9:
Diagram
(%i111) draw2d(xrange = [0,12],
yrange = [0,10],
head_length = 1,
vector([0,1],[5,5]), /* default type */
head_type = 'empty,
vector([3,1],[5,5]),
head_type = 'nofilled,
vector([6,1],[5,5]))$  
Figure 10:
Diagram
(%i112) draw2d(key_pos = top_left,
   key = "Sinus",
explicit(sin(x),x,0,10),
   key_pos = top_right,
key = "Cosinus",
color = red,
explicit(cos(x),x,0,10) )$
Figure 11:
Diagram
(%i113) draw2d(xrange = [0,10],
yrange = [0,10],
point_size = 0,
points([[5,5]]),
color = navy,
label(["Horizontal orientation (default)",5,2]),
label_orientation = 'vertical,
color = "#654321",
label(["Vertical orientation",1,5]))$
Figure 12:
Diagram
(%i114) draw2d(
grid = true,
key="x^2, linear scale",
color=red,
explicit(x^2,x,1,100),
xaxis_secondary = true,
xtics_secondary = true,
logx_secondary = true,
key = "x^2, logarithmic x scale",
color = blue,
explicit(x^2,x,1,100) )$
Figure 13:
Diagram
(%i115) draw2d(xrange = [0,10],
yrange = [0,10],
point_size = 3,
point_type = diamant,
points([[1,1],[5,1],[9,1]]),
point_type = filled_down_triangle,
points([[1,2],[5,2],[9,2]]),
point_type = asterisk,
points([[1,3],[5,3],[9,3]]),
point_type = filled_diamant,
points([[1,4],[5,4],[9,4]]),
point_type = 5,
points([[1,5],[5,5],[9,5]]),
point_type = 6,
points([[1,6],[5,6],[9,6]]),
point_type = filled_circle,
points([[1,7],[5,7],[9,7]]),
point_type = 8,
points([[1,8],[5,8],[9,8]]),
point_type = filled_diamant,
points([[1,9],[5,9],[9,9]]) )$  
Figure 14:
Diagram
(%i116) draw2d(xrange = [0,10],
yrange = [0,4],
point_size = 3,
point_type = up_triangle,
color = blue,
points([[1,1],[5,1],[9,1]]),
points_joined = true,
point_type = square,
line_type = dots,
points([[1,2],[5,2],[9,2]]),
point_type = circle,
color = red,
line_width = 7,
points([[1,3],[5,3],[9,3]]) )$
Figure 15:
Diagram
(%i117) draw2d(xrange = [1,6],
yrange = [1,6],
head_length = 0.1,
vector([0,0],[5,2]),
unit_vectors = true,
color = red,
vector([0,3],[5,2]))$
Figure 16:
Diagram
(%i118) draw2d(
xaxis =true, xaxis_type=solid,
yaxis =true, yaxis_type=solid,
user_preamble="set grid front",
region(x^2+y^2<1 ,x,1.5,1.5,y,1.5,1.5))$
Figure 17:
Diagram
(%i119) draw2d(
key = "Bottom x-axis",
explicit(x+1,x,1,2),
color = red,
key = "Above x-axis",
xtics_secondary = true,
xaxis_secondary = true,
explicit(x^2,x,1,1)) $
Figure 18:
Diagram
(%i120) draw2d(explicit(x^3,x,1,1),
xaxis = true,
xaxis_width = 3)$
Figure 19:
Diagram
(%i121) draw2d(
xaxis_secondary=true,yaxis_secondary=true,
xtics_secondary=true,ytics_secondary=true,
xlabel_secondary="t[s]",
ylabel_secondary="U[V]",
explicit(sin(t),t,0,10) )$
Figure 20:
Diagram
(%i122) draw2d(yrange = [0.1,1.4],
color = red,
label(["Label in red",0,0.3]),
color = "#0000ff",
label(["Label in blue",0,0.6]),
color = light_blue,
label(["Label in light-blue",0,0.9],
["Another light-blue",0,1.2]) )$
Figure 21:
Diagram
(%i123) draw2d(key = "Small points",
points(makelist([random(20),random(50)],k,1,10)),
point_type = circle,
point_size = 3,
points_joined = true,
key = "Great points",
points(makelist(k,k,1,20),makelist(random(30),k,1,20)),
point_type = filled_down_triangle,
key = "Automatic abscissas",
color = red,
points([2,12,8]))$
Figure 22:
Diagram
(%i124) draw3d(color = cyan,
vector([0,0,0],[1,1,1]/sqrt(3)),
vector([0,0,0],[1,1,0]/sqrt(2)),
vector([0,0,0],[1,1,2]/sqrt(6)) )$
Figure 23:
Diagram
(%i125) load(worldmap)$
(%i126) /* A continent */
make_poly_continent(Europe)$
(%i127) apply(draw2d, %)$
Figure 24:
Diagram
---------------------
(%i128) staircase(cos(y), 1, 11, [y, 0, 1.2]);

\[\]\[\tag{%o128} false\]

Figure 25:
Diagram

-------------------------------------------

Plot2d
(%i129) fh_D(x):=h_D_;

\[\]\[\tag{%o129} \mathop{fh\_ D}(x)\mathop{:=}\ensuremath{\mathrm{h\_ D\_ }}\]

(%i130) plot2d([fh(x),fHab(x),fH(x),fh_D(x),[discrete,[0.44,0.44],[0,1]],
       [discrete,[0.44],[0.45]],vector([0.44,0.45],[0,1])],[x,0,1.5],
   [legend, "parabola","Top_box", "Water", "P_x", "P_z", "point"],
   [style, [lines, 5,5], lines, [lines, 3,1], lines, lines, [points, 3,2]],
   [point_type, circle]);

\[\]\[plot2d: expression evaluates to non-numeric value everywhere in plotting range.\]

\[\]\[\tag{%o130} false\]

Figure 26:
Diagram
eq:y=x_C;plot2d([fh(x),fHab(x),fH(x),fh_D(x),eq],[x,0,2],[y,0,4]);

Answer

(%i136) P_x;P_z;P;h_D_;x_C;phi_grad;

\[\]\[\tag{%o131} 44145.0\]

\[\]\[\tag{%o132} 49050.0\]

\[\]\[\tag{%o133} 65990.02595089655\]

\[\]\[\tag{%o134} 0.4444444444444444\]

\[\]\[\tag{%o135} 0.45\]

\[\]\[\tag{%o136} 48.01278750418334\]

Figure 27:D:\j_Iam_TEMP\_jh\_jh_ex2.jpg
Diagram
Scale screen 300 px
(%i139) P_x/300;P_z/300;P/300;

\[\]\[\tag{%o137} 147.15\]

\[\]\[\tag{%o138} 163.5\]

\[\]\[\tag{%o139} 219.9667531696552\]

(%i140) P_:sqrt(P_x_··2+P_z_··2);

\[\]\[\tag{%o140} 66010.66445717201\]

REL_ERRORS

(%i141) Rel_ERROR_P_x:(100/P_x)·(P_xP_x_),numer;

\[\]\[\tag{%o141} \mathop{-}0.033333333333308936\]

(%i142) Rel_ERROR_mP_x_:(100/mP_x_down)·(mP_x_downmP_x_),numer;

\[\]\[\tag{%o142} 0.0750249999998791\]

(%i143) Rel_ERROR_mP_z:(100/mP_z)·(mP_zmP_z_),numer;

\[\]\[\tag{%o143} 0.31335234633486214\]

(%i144) Rel_ERROR_P_z:(100/P_z)·(P_zP_z_),numer;

\[\]\[\tag{%o144} \mathop{-}0.029608063620829527\]

(%i145) Rel_ERROR_P:(100/P)·(PP_),numer;

\[\]\[\tag{%o145} \mathop{-}0.031275190421675786\]


Created with wxMaxima.

The source of this Maxima session can be downloaded here.