\( \DeclareMathOperator{\abs}{abs} \newcommand{\ensuremath}[1]{\mbox{$#1$}} \)
Умова
| (%i1) | kill(all); |
\[\]\[\tag{%o0} \ensuremath{\mathrm{done}}\]
| (%i6) | ro:1000;g:9.81;H:2;B:3;Hmn:1;n:1000; |
\[\]\[\tag{%o1} 1000\]
\[\]\[\tag{%o2} 9.81\]
\[\]\[\tag{%o3} 2\]
\[\]\[\tag{%o4} 3\]
\[\]\[\tag{%o5} 1\]
\[\]\[\tag{%o6} 1000\]
| (%i11) | fh(x):=x··2;fHab(x):=Hmn;fH(x):=H;Fx(h):=sqrt(h);diff(Fx(h),h); |
\[\]\[\tag{%o7} \mathop{fh}(x)\mathop{:=}{{x}^{2}}\]
\[\]\[\tag{%o8} \mathop{fHab}(x)\mathop{:=}\ensuremath{\mathrm{Hmn}}\]
\[\]\[\tag{%o9} \mathop{fH}(x)\mathop{:=}H\]
\[\]\[\tag{%o10} \mathop{Fx}(h)\mathop{:=}\sqrt{h}\]
\[\]\[\tag{%o11} \frac{1}{2 \sqrt{h}}\]
| (%i12) | dh(h):=1/(2·sqrt(h)); |
\[\]\[\tag{%o12} \mathop{dh}(h)\mathop{:=}\frac{1}{2 \sqrt{h}}\]
| (%i13) | plot2d([fh(x),fHab(x),fH(x)],[x,0,2]); |
\[\]\[\tag{%o13} false\]

| (%i14) | plot2d(Fx(h),[h,0,H]); |
\[\]\[\tag{%o14} false\]

| (%i15) | fp(h):=ro·g·(H−h); |
\[\]\[\tag{%o15} \mathop{fp}(h)\mathop{:=}\ensuremath{\mathrm{ro}} g\, \left( H\mathop{-}h\right) \]
P_x - горизонтальна проекція сили тиску
| (%i16) | P_x:integrate(fp(h)·B,h,0,Hmn); |
\[\]\[\tag{%o16} 44145.0\]
| (%i17) | mP_x:integrate(fp(h)·(H−h)·B·h,h,0,Hmn); |
\[\]\[\tag{%o17} 26977.5\]
| (%i18) | mP_x_down:integrate(fp(h)·B·h,h,0,Hmn); |
\[\]\[\tag{%o18} 19620.0\]
| (%i19) | h_D:mP_x/P_x; |
\[\]\[\tag{%o19} 0.6111111111111112\]
| (%i20) | h_D_:mP_x_down/P_x; |
\[\]\[\tag{%o20} 0.4444444444444444\]
| (%i21) | h_D+h_D_; |
\[\]\[\tag{%o21} 1.0555555555555556\]

P_x - чисельний алгоритм методу К123
| (%i24) | P_x_sum:0;dh:Hmn/n;h:0; |
\[\]\[\tag{%o22} 0\]
\[\]\[\tag{%o23} \frac{1}{1000}\]
\[\]\[\tag{%o24} 0\]
| (%i25) | Pi_x(h):=ro·g·(H−h)·B; |
\[\]\[\tag{%o25} \mathop{Pi\_ x}(h)\mathop{:=}\ensuremath{\mathrm{ro}} g\, \left( H\mathop{-}h\right) B\]
| (%i27) | for i:1 while h < Hmn do (Pi:Pi_x(h)·dh,P_x_sum:P_x_sum+Pi,h:h+dh);P_x_:P_x_sum; |
\[\]\[\tag{%o26} \ensuremath{\mathrm{done}}\]
\[\]\[\tag{%o27} 44159.71499999999\]
| (%i28) | Px_test:integrate(Pi_x(hi),hi,0,Hmn); |
\[\]\[\tag{%o28} 44145.0\]
| (%i31) | mP_x_sum:0;dh:Hmn/n;h:0; |
\[\]\[\tag{%o29} 0\]
\[\]\[\tag{%o30} \frac{1}{1000}\]
\[\]\[\tag{%o31} 0\]
| (%i33) | for i:1 while h < Hmn do (Pi:Pi_x(h)·dh·h,mP_x_sum:mP_x_sum+Pi,h:h+dh);mP_x_:mP_x_sum; |
\[\]\[\tag{%o32} \ensuremath{\mathrm{done}}\]
\[\]\[\tag{%o33} 19605.280095000024\]
| (%i34) | kill(h); |
\[\]\[\tag{%o34} \ensuremath{\mathrm{done}}\]
| (%i35) | mPx_test:integrate(Pi_x(h)·(h),h,0,Hmn); |
\[\]\[\tag{%o35} 19620.0\]
| (%i37) | h_D:mP_x_sum/P_x_sum;h_D_test:mPx_test/Px_test; |
\[\]\[\tag{%o36} 0.44396301232922425\]
\[\]\[\tag{%o37} 0.4444444444444444\]
| (%i38) | Rel_ERROR:(100/h_D_test)·(h_D_test−h_D),numer; |
\[\]\[\tag{%o38} 0.10832222592453838\]
P_z - вертикальна проекція сили тиску
| (%i39) | kill(h); |
\[\]\[\tag{%o39} \ensuremath{\mathrm{done}}\]
| (%i44) | ro:1000;g:9.81;H:2;B:3;Hmn:1; |
\[\]\[\tag{%o40} 1000\]
\[\]\[\tag{%o41} 9.81\]
\[\]\[\tag{%o42} 2\]
\[\]\[\tag{%o43} 3\]
\[\]\[\tag{%o44} 1\]
| (%i45) | P_z:integrate(fp(h)·B·dh(h),h,0,Hmn); |
\[\]\[\tag{%o45} 49050.0\]
| (%i46) | mP_z:integrate(fp(h)·B·dh(h)·(Fx(h)),h,0,Hmn); |
\[\]\[\tag{%o46} 22072.5\]
| (%i47) | x_C:mP_z/P_z; |
\[\]\[\tag{%o47} 0.45\]

P_z - чисельний алгоритм методу К123
| (%i52) | ro:1000;g:9.81;H:2;B:3;Hmn:1; |
\[\]\[\tag{%o48} 1000\]
\[\]\[\tag{%o49} 9.81\]
\[\]\[\tag{%o50} 2\]
\[\]\[\tag{%o51} 3\]
\[\]\[\tag{%o52} 1\]
| (%i55) | P_z_sum:0;dh:Hmn/n;h:0; |
\[\]\[\tag{%o53} 0\]
\[\]\[\tag{%o54} \frac{1}{1000}\]
\[\]\[\tag{%o55} 0\]
| (%i57) | fB(i,dh):=sqrt(i·dh); fB(1,dh),numer; |
\[\]\[\tag{%o56} \mathop{fB}\left( i\mathop{,}\ensuremath{\mathrm{dh}}\right) \mathop{:=}\sqrt{i\, \ensuremath{\mathrm{dh}}}\]
\[\]\[\tag{%o57} 0.03162277660168379\]
| (%i59) | Pi_x(h):=ro·g·(H−h)·B; Pi_x(0.2); |
\[\]\[\tag{%o58} \mathop{Pi\_ x}(h)\mathop{:=}\ensuremath{\mathrm{ro}} g\, \left( H\mathop{-}h\right) B\]
\[\]\[\tag{%o59} 52974.0\]
| (%i61) | fdb(i,dh):=(fB((i+1),dh)−fB((i),dh))/dh;fdb(1000,dh),numer; |
\[\]\[\tag{%o60} \mathop{fdb}\left( i\mathop{,}\ensuremath{\mathrm{dh}}\right) \mathop{:=}\frac{\mathop{fB}\left( i\mathop{+}1\mathop{,}\ensuremath{\mathrm{dh}}\right) \mathop{-}\mathop{fB}\left( i\mathop{,}\ensuremath{\mathrm{dh}}\right) }{\ensuremath{\mathrm{dh}}}\]
\[\]\[\tag{%o61} 0.4998750624609638\]
| (%i62) | for i: 0 while h < Hmn do (db:fdb(i,dh),Pi:Pi_x(h)·db·dh,P_z_sum:P_z_sum+Pi,h:h+dh)$ |
| (%i64) | P_z_:P_z_sum,numer;h; |
\[\]\[\tag{%o63} 49064.52275520602\]
\[\]\[\tag{%o64} 1\]
| (%i67) | mP_z_sum:0;dh:Hmn/n;h:0; |
\[\]\[\tag{%o65} 0\]
\[\]\[\tag{%o66} \frac{1}{1000}\]
\[\]\[\tag{%o67} 0\]
| (%i68) | for i: 0 while h < Hmn do (db:fdb(i,dh),Pi:Pi_x(h)·db·dh·fB(i,dh),mP_z_sum:mP_z_sum+Pi,h:h+dh)$ |
| (%i70) | mP_z_:mP_z_sum,numer;h; |
\[\]\[\tag{%o69} 22003.335303355238\]
\[\]\[\tag{%o70} 1\]
| (%i72) | x_C_:mP_z_/P_z_,numer; x_C; |
\[\]\[\tag{%o71} 0.44845713496765977\]
\[\]\[\tag{%o72} 0.45\]
| (%i73) | Rel_ERROR:(100/x_C)·(x_C−x_C_),numer; |
\[\]\[\tag{%o73} 0.3428588960756102\]
P - Сила гідростатичного тиску
| (%i74) | P:sqrt(P_x··2+P_z··2); |
\[\]\[\tag{%o74} 65990.02595089655\]
| (%i75) | phi_rad:atan(P_z/P_x),numer; |
\[\]\[\tag{%o75} 0.83798122500839\]
| (%i76) | phi_grad:atan(P_z/P_x)·(180/%pi),numer; |
\[\]\[\tag{%o76} 48.01278750418334\]
| (%i77) | d:tan(P_z/P_x); |
\[\]\[\tag{%o77} 2.0199703317182265\]
| (%i78) | fh_D(x):=h_D_; |
\[\]\[\tag{%o78} \mathop{fh\_ D}(x)\mathop{:=}\ensuremath{\mathrm{h\_ D\_ }}\]
| (%i79) |
plot2d([fh(x),fHab(x),fH(x),fh_D(x),[discrete,[0.44,0.44],[0,1]], [discrete,[0.44],[0.45]]],[x,0,1.5], [legend, "parabola","Top_box", "Water", "P_x", "P_z", "point"], [style, [lines, 5,5], lines, [lines, 3,1], lines, lines, [points, 3,2]], [point_type, circle]); |
\[\]\[\tag{%o79} false\]

Answer
| (%i85) | P_x;P_z;P;h_D_;x_C;phi_grad; |
\[\]\[\tag{%o80} 44145.0\]
\[\]\[\tag{%o81} 49050.0\]
\[\]\[\tag{%o82} 65990.02595089655\]
\[\]\[\tag{%o83} 0.4444444444444444\]
\[\]\[\tag{%o84} 0.45\]
\[\]\[\tag{%o85} 48.01278750418334\]

| (%i88) | P_x/300;P_z/300;P/300; |
\[\]\[\tag{%o86} 147.15\]
\[\]\[\tag{%o87} 163.5\]
\[\]\[\tag{%o88} 219.9667531696552\]
| (%i89) | P_:sqrt(P_x_··2+P_z_··2); |
\[\]\[\tag{%o89} 66010.66445717201\]
REL_ERRORS
| (%i90) | Rel_ERROR_P_x:(100/P_x)·(P_x−P_x_),numer; |
\[\]\[\tag{%o90} \mathop{-}0.033333333333308936\]
| (%i91) | Rel_ERROR_mP_x_:(100/mP_x_down)·(mP_x_down−mP_x_),numer; |
\[\]\[\tag{%o91} 0.0750249999998791\]
| (%i92) | Rel_ERROR_mP_z:(100/mP_z)·(mP_z−mP_z_),numer; |
\[\]\[\tag{%o92} 0.31335234633486214\]
| (%i93) | Rel_ERROR_P_z:(100/P_z)·(P_z−P_z_),numer; |
\[\]\[\tag{%o93} \mathop{-}0.029608063620829527\]
| (%i94) | Rel_ERROR_P:(100/P)·(P−P_),numer; |
\[\]\[\tag{%o94} \mathop{-}0.031275190421675786\]
Created with wxMaxima.
The source of this Maxima session can be downloaded here.